
I
I
I

I

I
I
I

I
I

I

I
I

I
I
I

I
I

I
I

LOCKHEED MISSILES & SPACE COM/:'ANY

HUNTSVILLE RESEARCH & ENGINEERING CENTER

HUNTSVILLE RESEARCH PARK

4800 BRADFORD DRIVE, HUNTSVILLE, ALABAMA

HREC 0178-I

LMSC/HREC A783333

FINAL REPORT

SOLUTIONS OF SYSTEMS OF

NONLINEAR EQUATIONS

28 October 1966

Contract NAS8-Z0178

APPROVED BY:
q C

G. E. Cl_r{stopher

Mgr., Dynamics & Guidance

_.. S. Farrior

sxdent Manager



I
I

I
I

I
I

I
I

I
I

I
I
I

I
I
i

i
I

I

LMSC/HREC A783333

FOREWORD

This report documents and summarizes work accomplished in the Solu-

tions of Systems of Nonlinear Equations, Contract NAS8-20178. It includes a

complete discussion of the theory, a bibliography of the literature consulted

during the study, a user's manual and a programmer's manual of the resulting

computer programs.

This work was performed by Lockheed Missiles & Space Company,

Huntsville Research & Engineering Center, for the Aero-Astrodynamics

Laboratory of the George C. Marshall Space Flight Center. Contributors

to this study were K. L. Remmler, D. W. Cawood, J. A. Stanton, and

R. Hill.
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SUMMARY

This report presents the results of a study to develop a method and

computer program for solving an arbitrar 7, simulataneous system of nonlinear

algebraic and transcendential equations. A review of the literature and the

theor 7 regarding some particular methods (Newton-Raphson, False Position,

Fletcher-Powe11, Simplex Search, Sequential Minimax Search, and Contour

Mapping are discussed. Computation schemes for digital computer facilities

are emphasized, however, the feasibility and attractive features of hybrid

computation schemes are also discussed. The final result of this study is a

composite computer program which encompasses a "limited" spectrum of

basically different numerical methods - gradient, minimization, and search

techniques. Test results are included as a basis for comparison of the

diffe rent methods.

iii
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Section 1

INTRODUCTION

The analysis of nonlinear systems has become a necessity in numerous

problem areas associated with the development of aerospace vehicles. Conse-

quently, equations requiring solution are quite varied and seldom are of a

form for which a known solution exists.

One particular problem area of interest is the analysis of nonlinear

dynamical system in which the solution of nonlinear differential equations

is attempted by the Ritz Averaging Method. This procedure is discussed in

l_eferences i and 2. In applying the Ritz Averaging Method, one is confronted

by the problem of determining the solution to a simultaneous system of non-

linear algebraic and transcendental equations. The dynamical systems to

which this technique can be applied are presumably quite numerous, however,

specific examples for which it has proven to be useful are nonlinear vibration

and control system problems. Due to the complexity and peculiar character-

istics usually associated with nonlinear dynamical systems, a capability for

solving widely diverse classes of nonlinear equations is an essential require-

ment.

There are many methods that have been formulated for solving nonlinear

equations and the variations or modifications to these methods are numerous.

One very logical explanation for the existence of so many methods and varia-

tions thereof is simply that any one method is frequently not suited to a partic-

ular system of equations.
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Section Z

TECHNICAL DISCUSSION

An important by-product of this study contract has been the knowledge,

insight, and notions gained through a thorough review of the literature on

methods for solving nonlinear equations. The first subsection of this discus-

sion is therefore devoted to a brief survey of the numerous methods and vari-

ations thereof that had been discovered in the literature. Many of the methods

included in this survey were developed for minimization problems; therefore

the authors may not have had their application to solving nonlinear equations

in mind. They are indeed applicable, however, and offer some very good

approaches to the problem at hand.

The essential purpose of the literature survey was to find the techniques,

or combination of techniques that would provide a basis for accomplishing the

contractual objective - the objective being a computer program for solving an

arbitrary simultaneous system of nonlinear algebraic and transcendential

equations. No one method appeared to be superior than all others in being

completely general regarding its application to arbitrary equations, the

selection of a particular method being dictated by the particular system of

equations. Hence a combination of methods encompassing to a "limited"

extent the complete spectrum of basically different methods, was chosen

as the best approach.

The major factors influencing the selection of these particular methods

were

1. simplicity of the logic and computation scheme

2. reliability regarding convergence

3. accuracy

4. popularity

Z
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The significance of these factors is obvious, however, the "yardstick" for

measuring them is nebulous and often arbitrary. Therefore some equally good

{possibly better) techniques were excluded solely to preclude an unwieldly

computer program. Some specific comments relating to these factors are

included in Section 2. I. A detailed discussion of the theory for particular

techniques selected is provided in Section 2.2.

Another major factor which generally influences the choice of a particular

method is the particular computer facility available - whether it be analog,

hybrid, or digital, as well as the size and speed limitations. The facility for

which the present method has been developed is the NASA/MSFC Computation

Laboratory's IBM 7094. Since some techniques appear to be especially attrac-

tive for repetitive analog and hybrid computation, a general discussion of such

computation schemes is included in Section 2.3.

Generality of the computer program has been emphasized. However,

the requirement for such a program is strengthened by the existence of parti-

cular applications. Section Z.4 provides a typical example of an engineering

problem whose solution demands an efficient technique such as the one devel-

oped in this study.

Z. 1 A GENERAL SURVEY OF METHODS FOR SOLVING NONLINEAR

EQUATIONS

A bibliography of selected articles consulted in the performance of this

study is provided as Appendix A of this report. This is not a complete list

of all the literature available on the subject; however, it is an attempt to

include the most significant work representing a complete spectrum of different

approaches and major variations thereof. A basic division of the techniques

might be as follows: (1) gradient methods, (2) direct search, and (3) random

search. One approach frequently employed, which can be accomplished by

techniques classified in any one of these three categories, is to replace the

system of equations by the problem of finding the minimum of a single function.

The Fletcher-Powell and Simplex Methods are examples of this approach. All



I

I

I

I

I

1

I

I

I

I

I

I

I

I

I

I

I

I

i

LMSC/HREC A783333

three of the basic techniques are amenable to both digital, and hybrid computers.

In general, however, the search methods appear more attractive when repetitive

analog and hybrid computers are available.

Some general references such as textbooks and survey papers, as well

as articles concerning specific techniques, are included in this bibliography.

Brooks (5), Freudenstein (15), Hochstrasser (17), Householder (19), Levine (Z4),

Ostrowski (3Z), and Saaty (36) describe fundamental theory and give a general

survey of classical methods. These include for example the Newton-Raphson

Method, Regula-Falsi, Graeffe Method, steepest descent, relaxation methods,

and random search methods. Spang (38) provides the most comprehensive

survey and complete review. Brooks (5) attempts to compare various methods

on an experimental basis.

Specific gradient techniques are presented by Barnes (1), Booth (3),

Broyden (6), Crockett (7), Curry (8), Davidon (9), Fletcher (13)and (14),

Kizner (Z3), Powell (33) and (34), Rosenbrock (35), Shah (37), and Wolfe (41).

The method proposed by Broyden (6), is a modification to the Newton-Raphson

technique which would presumably result in a savings of computer time with

some loss in accuracy. Since the computer time of the Newton-Raphson rou-

tine in the present program appears to be negligible, this modification was not

employed. Gradient methods appear to be the most abundant in the literature

and are employed quite widely in the aerospace industry for trajectory and

system optimization studies. The three most popular methods for solving

systems of algebraic equations appear to be the Newton-Raphson, False Posi-

tion, and Fletcher-Powell methods. The Fletcher-Powell method is however,

rather new and hence not nearly as proven a technique as many others. There-

fore its selection was not without some anxiety. The final results obtained

with this program, however, were in general, better than those obtained from

any of the other methods.

Various search strategies are presented by Berman (Z), Himsworth (16),

Hooke (18), Johnson (20), Kiefer (21), Fletcher (12) and (ZZ), Nelder (30), and

4



LMSC/HREC A783333

and Swann (39). An advantage of search methods is that they do not require

the computation of a gradient; hence, regularity and continuity conditions (such

as the existence of derivatives) are not required of the function to be minimized.

If the gradient of a function cannot be determined analytically or by a finite

difference approximation, a search technique is necessary. Johnson and Kiefer

present a sequential procedure, which involves Fibonacci numbers, for locating

the minimum of a unimodal function. This is an optimal procedure in that any

other sequential search may require a larger number of evaluations. Berman

presents a family of procedures which is simpler than that proposed by

Johnson and Kiefer, and makes the claim that these procedures require about

the same number of evaluations as the Fibonacci method. Himsworth and

Nelder discuss the application of a sequential search using a simplex. The

simplex method proposed by Nelder and Mead is included in the composite

computer program and a complete description of this method is given in the

sequel. This particular method was selected because of its simplicity and the

immediate success that was achieved in its application to typical problems.

Hooke presents a search technique which combines the aspects of both the

gradient and univariate search techniques. After each point, a univariate

search is made around that point to determine the direction to the minimum.

A "pattern move" is then made in this direction. Fletcher makes a comparison

of a number of methods, including the search technique proposed by Swann.

Some random search techniques are discussed by Brooks (4), Favreau(10)

and (11), Mitchell (28), and Munson (29). Brooks gives a general discussion of

the random method and defines three types of random search: (1) simple random

methods, {2) stratified random method, and (3) creeping random method. Favreau

and Munson present techniques for implementing random search on the analog

computer. A hybrid computer technique is presented by Mitchell which employs

digital logic to implement different random search strategies and step-size changes.

Random search methods are preferred for poorly behaved functions containing

discontinuities or nonlinearities. These are the less elegant and optimal of all

the techniques, however, they are reliable and practical if high speed computers

are available. The modern repetitive digital and hybrid computers offer very

attr active implementation po s sibilitie s for the s e technique s.
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Contour mapping appears to be very popular as a desirable tool, however,

automatic techniques for achieving these maps appear to be lacking (at least,

in the literature). McCue (25), (26) and (Z7) has developed such a technique for

two parameter optimization problems. Since a similar computer routine has

been included in the composite program, a complete description is provided in

the sequel. This is a very useful tool when difficulties are encountered in

computing the roots. It may be employed to determine the number of roots,

their location, division between closely spaced roots, and certain features of

the function such as valleys, ridges and saddle points, which would hamper

convergence.

The final conclusion obtained from the review as well as work performed

in this study is that further development is required in the area of techniques

for determining certain features of the equations to be solved. The justifica-

tion for this conclusion is based on the following requirements:

1. The selection of a particular method for a particular function is
frequently e s sential.

Z. An initial guess for the solution is essential for all methods.

Without these additional techniques it can be extremely difficult, if not impos-

sible in some instances, to successfully apply any of the methods.

2.Z REVIEW OF SOME PARTICULAR METHODS

The following subsections discuss in some detail those methods which

were most thoroughly examined during the study contract. For the most part,

these include the methods employed in the composite computer program:

Newton-Raphson, Fletcher-Powell, Simplex Method, and Contour Mapping.

The other methods discussed in detail are the method of False Position and

the Sequential Minimax Search.

The principal reason for including the method of False Position (known

as Regula-Falsi) is that it is one of the oldest and best known methods. A

6
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computer program, user's manual, and program's listing has also been

included (see Appendixes B-Z and C-2), however, it was not included in the

composite program. The reasons for excluding it from the composite program

were (1) its similarity to the Newton-Raphson method, and (2) the performance

of the computer program was, in general, not nearly as good as that of the

Newton-Raphson computer program.

The Newton-Raphson and Fletcher-Powell methods are both gradient

techniques, however, the Fletcher-Powell method differs in that it is a

minimization procedure and solves for the roots by forming a single function

from the system of equations.

The sequential minimax search was considered in detail because it does

not require an initial estimate sufficiently close to the root in question, while

this is an essential requirement of all the other methods. The present formu-

lation of the method, however, is limited to unimodal functions with one inde-

pendent variable. Generalization of this method appears to be quite complicated

and the effort required to develop such a generalization would be extensive.

Therefore, a computer program was not attempted.

Z.2.1 Newton-Kaphson

Suppose that a is the desired root of the equation f(x) = 0; let x 1 be an

abscissa near enough to a that the tangent at P[x 1, f(xl} ] cuts the axis nearer

to c_ than x 1. This point of intersection (Figure 1 ) is the second approximation

of x 2.

Since the tangent at P is

y- f(xl)=fix l) Ix- x_]

it is easy to find that

xz = xI -f(xl)/f'(xl) •
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Using x 2 as a starting point, the tangent at Ix 2, f(x2) ] will give

I x3 = _z - f(xz)/f'(xz)

The process can be repeated, and the root a is approached with great speed.

It is often very convenient to use the rule-of-thumb that if the correction term

f(xi)/f'(xi) begins with n zeros after the decimal point, then the result is

correct to Zn decimals, i.e., the number of correct decimals roughly doubles

at each stage.

Another worthwhile feature of the Newton-Raphson process is the fact

that it is self-correcting for minor errors. Any errors made in determining

x 2 will merely give a different point from which to draw the second tangent;

this will not affect the limit a approached by the sequence x 1, x z, x 3, "" ".

Newton-Raphson is easily extended to simultaneous solution of systems

of equations• Considering the system

I
I
I

I
I

I
I

I
I

f,( ) = oX I, .*•, X n

fn(Xl' "''' Xn)
= 0

where n >_ ZO

we obtain correctionsAx 1 .... , AXn for the estimates to the roots x 1 , ...,

x so that new estimates may be obtained by
n ,

x I = x I + Ax 1
(i) (i -1) (i)

xz = xz + Ax z
(i) (i -1) (i)

x = x +Ax

n(i) n(i -1) n(i)

9

(1)

(z)
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whe r e

fl (Xl (i Z(i) n(i)), x ,..., x ) = 0

,x 3 ,... x ) = 0
fn (Xl(i) (i) ' n(i)

(3)

By expanding (3) by Taylor's theorem for a function of n-variables we get
.th

at the x iteration

F 1 + F 1 +... + F 1 fl(Xl-- . , X n .)
x I x z Xn ' xz'"" '

F Z + F Z +... + F z

x I xz xn

F n + F n +... + F n

x I x2 xn

= "fz(Xl' xz' "''' Xn)

=-fr_Xl, Xz,..., xn)

where

F 1 0fl [ Of2 1Xl - 0x I AXl' Fzxl - @x I AXl'

(i -1) (i -1)

etc.

We now have the matrix form AX = B where

l ._

0f 1 Of 1 Of 1

Ox 1 Ox z Ox n

Of Of Ofn n

Ox 10x z Ox n

10
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-Ax 1"

Ax z

X =

Zlx
n

B ..

"fl{Xl' xz' "''' Xn)

"fj{xl' xg, ..., Xn)

-fn(xl, x2,..., x n)

We then solve for x using the Gauss-Jordan reduction technique thereby obtaining

• < c for some prescribed
Axj {j=l, . .. , n). We then reiterate until all Axj

accuracy E.

2.Z.2 False Position

One of the oldest methods of finding roots is known as Regula-Falsi

{method of False Position}. It requires a knowledge of the approximate

location of the root and the computation of two values f(a) and fib}, where

a < r < b, r being a root of f(x) = 0 {Figure g). If a and b are close

enough to r so that no other root lies between a and b, then by continuity

f(a) and f(b) are of opposite sign• If we replace the arc AB by the chord AB,

we obtain an abscissa c which is closer to r than A was {in Figure g, f(c)

is negative}• The value of c is obviously [af(b) - bf(a}]/[f(b) - f(a)]. The

process may be repeated using the chord BC. Hanry and Bernede {Refer-

ence 3)have developed a computer scheme using Regula-Falsi which is

capable of solution of ten equation systems, providing transcendential terms

are not numerous. Accuracy of solution and computer execution time are

not acceptable above the five-equation system.

1 _ •
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2.2.3 Fletcher-Powell Method

Minimization procedures may be employed to solve systems of non-

linear equations. Given the system

fl (_) = 0

f (x) = 0
n

where _ is the vector with components x 1, .... x n, the function

f(x) = flz(x)+"" +f Z(x)n

f(x) is formed

The function in (5) is non-negative and achieves the minimum value zero

only when the system (4) is satisfied. The value x which minimizes (5)

therefore satisfies (4) (i.e., it is a root of the system). Hence (4) may

be solved by locating the minimum of (5).

The theory of this method has been developed for quadratic functions

of n variables. It is known that even if the function to be minimized is

non-quadratic, the second-order terms of the Taylor series expansion

dominate in the vicinity of the minimum. Therefore the only methods

which will converge quickly for a general function are those which will

guarantee to find the minimum of a general quadratic speedily.

Let it be required to minimize a quadratic function of the

x 1, x 2 ..... x . Denote the column vector (x 1,..., x )T by x.
n n

quadratic form to be minimized may be written

n variables

The

n

f(x) = b+ _: a.x. + _ _ G.. x.x.
1 1 1 i,j 1j 1j

-T- _T -= b+a x + _ Gx

13

(4)

(5)

(6)
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In this representation, b is a scalar constant, gT is the row vector (al,... , a n)

and G is the non-singular, symmetric matrix with elements Gij. The gradient

of the function f at the point _ is

m

g(x) = a + G x (7)

At the minimum point xmthe gradient vanishes, so that

o = _+Gx
m

-1
Subtracting (8) from (7) and pre-multiplying by G

= G "1x - x m g(z_)

one finds

(8)

(9)

as the displacement between the point x and the minimum point x m. Clearly,

if one were interested in the minimization of quadratic functions only, one

would simply compute xmdirectly from (9). Inasmuch as this of course

would not provide the correct answer when the given function is non-quadratic,
-1

the following iterative procedure, in which G is not evaluated directly, is

employed for general functions. If the function happens to be quadratic (in n

variables) the procedure converges to the minimum in precisely n steps,

and the method in this case requires about the same amount of computer

time as the direct use of Equation (9). For non-quadratic functions, more

than n steps will be required. The method is as follows:

-O
1. Starting with an initial estimate x of the minimum compute the

-0
function f(x °) and the gradient g(x °) -- g for brevity.

-o _H o oZ. Set s = [_

The matrix H ° is any positive definite symmetric matrix (of dimension

n x n). It is convenient to let H ° = I. This will cause the initial direction

in the descent process (Step 3) to be along the line of steepest descent.

14



I
I
I

I

I
l
I

I
I

I

I
I
I

I
I

I
I

I
I

LMSC/HREC A783333

-O O
3. Move fron_ the point x° along the line x + As until

f(x ° + As°) is a minimum with respect toA. Let the critical value of_be
O

a , which can be shown to be positive.

4. Set_° = ao_o

-I' -o -o
5. Set x = x + ¢7

6. Compute f(x 1) and g(x I)

-o -1 -o
7. Set y = g - g

8. Define AI _ _o_oT , B I = _H og,oY-oTH o

_oT -oy y°TH°y°

and set H 1 = A 1 + B 1

9. Repeat the entire process proceeding from the point

-1 H Igradient g and matrix . Continue in this way.

1
, with the

The predicted absolute distance from the minimum is (from Eq.

T 1/2

di = [_i G-1 G-l_i]

9)

• T 1/2
(_i _i)

- i _H i. iThe last line of this equation comes from the definition s = g (Step Z

of the procedure) and the fact that Hi tends to G'I. The procedure just

outlined may be terminated when the distance d i is less than some prescribed
- i .

amount, or alternatively when every component of s is less than a prescribed

accuracy. Additional safeguards stated in Reference 4 are to work through at
-i -i

least n iterations and to apply the tests to a as well as s .

15
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The following points with respect to the Fletcher-Powell Method are

proved in Reference'4:

l. The method is stable, in that the function to be minimized is

decreased by each step.

For quadratic functions, the minimum is found in n iterations,

and H n = G-1.

The procedure used for implementing Step 3, that is the determinat.ion
-i i

of the minimum of f along the line x + As requires the calculation of the
-1 -i i

function and the gradient at the point x and a point x + As on this line.

Cubic interpolation is used to locate the minimum of the function along the

line,

2.2.4 Simplex Search Method

Various search routines for locating the minimum (or maximum) of a

function have been devised. These are based upon the principle of evaluating

the function at points selected according to a certain strategy. Under the

proper circumstances these procedures converge to the minimum or maxi-

mum in question.

The celebrated search method for functions of a single variable is that

due to Jo Kiefer {Reference 5}. This method requires that the function be

unimodal; i.e., that there be a single maximum and that the function be

strictly increasing to the left and strictly decreasing to the right of the maxi-

mum. For a specified number of function evaluations to be made, the pro-

cedure provides an interval of smallest length {in the _-minimax sense

defined in Reference 5) containing the maximum, the points being selected

according to the Fibormacci sequence.

16
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For functions of several variables, D. J. Newman (Reference 6) gives

a procedure for locating the maximum based upon evaluating the function at

a minimum number of points. If k is the number of independent variables,

a unit cube containing the maximum is selected in k-space. The method

determines a point for which the value of the function dominates all function

values on the (n + I)k lattice points, n being arbitrary. Unimodality is postu-

lated and the author is explicit for the case of two variables. Hooke and

Jeeves in Reference 7 describe direct search and pattern search techniques.

An elegant simplex method described by Nelder and Mead (Reference 8),

having the advantage of a simple logic, has been included in the composite

program.

I

I
I

The simplex method is diagrammed in the flow chart in Appendix C-1 for

a function of an arbitrary number of variables. The method may be described

as follows. One starts by selecting the vertices of a simplex (see Reference

9 for example for a clear definition} in the k-dimensional space of the function

to be minimized. In two variables this means selecting the three vertices of a

non-degenerate triangle; in three variables it means picking the vertices of a

non-degenerate tetrahedron, etc. The simplex should preferably be located

not too far from the position of the minimum which is being sought. Denote

the k+l points bYPo, "''' Pk:

I Compute yo =f(Po ), ..., yk =f(Pk )where fis the function to be mini-

mized. Denote the maximum of these numbers by yh=f(Ph ) and the minimum

I by y_= f (P_). Compute the centroid of the set of all the k+ 1 points excluding

the highest, Ph:

[

I

I Replace Ph by P# defined by

i P# = 11 + a)i _ - Ph

(a = reflection coefficient, a > O)

I 17
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where P is on the opposite side of P from Ph

Compute Y" = f(P*).

and on the line joining them.

If y < y_ a new minimum has been determined and therefore one

decides to move further in the same direction by expanding to a new point P

P = (l+y) P - YP

** (p**where Y >0 and 1 + Y = expansion coefficient. Compute y = f ). If

y < yf replace Yh by y Call other k points of the original simplex remain

unaltered). Restart the process, again labeling the high point and the low

point of this new simplex Yh and y . If y > yl the expansion has failed.
In that case, remove the point P%'_

, replace PhbYP , and restart the process.

However, if the point P determined by the reflection process was such that

> -_Y:for alli /h, then a new Ph should be defined as either the old Ph orY

i P (whichever has the lower y value) and form

i _g< --P = _Ph ÷ (1 -_) P

i This is a contraction, the point P':'* being closer to P than Ph" The quantity

_is known as the contraction coefficient, and 0 < _ < 1. Compute y** = y(P**).

i If y < Yh then PhiS replaced byP and the process is restarted. However,

if y > Yh the contraction has failed, in which case all Pi's are replaced by

i ½(Pi + PL ) and the process is restarted. The iteration continues until the
minimum is reached.

I

I
I

I

Figure 3 illustrates this method for the solution of the system of

equations

2
x +y- 11 = 0

2
x+y - 7 = 0

i 18
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(3, -1) (3.3, -1.0)

i
__iii_ o4'63(3.6, -1.3)

4.O12 -3.36
(3, -1.3)

1.33

e3.0

°.456

2.46

Ol.84 02.3

(3, -2)

(3;9,-1,0) (4,-1)

14.7

4, -2)

2
Figure 3 - Solution of the System of Equations x

x+y 2 -7=0

+y- 11 = O,

19
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which is accomplished by minimizing the function

f(x,y) = (x 2 +y- 11)2 +(x+y2_ 7}2

The three initial simplex vertices are selected as {3, -1.3), {3.3, -1.0),

(3.6, - 1.3). After 39 iterations the procedure gives (3.5844284, -I.8481265)

for the minimum point. The figure shows the initial simplex and points that

were determined as a result of the reflection, expansion, and contraction

steps that take place as a result of the method described. The value of the

function is indicated next to each point.

To ensure that the simplex method will not seek an incorrect minimum

point, a unit cube in k-space should be determined which contains the desired

minimum and the function should be redefined with some arbitrarily high value

on the outside of the cube. Any attempt to wander outside this region will

cause the process to return to the inside of the cube and converge to the de-

sired minimum.

The simplex method was employed successfully on another problem

{x 1 + 10x2 )2 + 5(x 3-x4)2 + {x 2-2x3}4 + 10{x l-x4 )4 = rain.

with the initial simplex vertices at the five points

(3,-1, o, 1)

(2,-1, o, 1)

2.2.5 Sequential Minimax Search

The various iterative approaches for solving systems of equations,

such as Newton-Raphson and Fletcher-Powell, require an initial estimate

sufficiently close to the root in question.

20
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Relatively recently some interest has been displayed in obtaining

search procedures for locating approximately the maximum (or minimum)

of a function of one or more variables by computing the function at a minimum

number of points. Kiefer in Reference 5 develops an optimum sequential

search strategy for locating the maximum of a unimodal function of one

variable• This is a function f(x) defined in the unit interval for which

there exists a number x in the interval such that either
m

a. f(x) is strictly increasing for x _< x m and strictly decreasing

for x> x
m' or

b. f(x) is strictly increasing for x <x m and strictly decreasing

for x> x
- m

Unimodality is the only assumption. Assumptions with regard to continuity,

not required. Let_N denote the class of alldiffer entiability, etc., are

strategies involving N successive observations (or evaluations) of the

function, and let D(f, S) denote the interval containing the maximum

point obtained as a result of N observations of the function f by means of

the strategy S. Also let L(D) denote the length of D. The problem is

C_.. such that, for _ > 0
to find a strategy S N IN

[ "] ]sup L D(f, S N ) < info s_p L (f, S) + (
f S C_ N

Let U be the n th Fibonacci number (i.e., U = U + U Thus
n n n-1 n-Z )"

U 0 = 0 U 4 = 3

U I = I U 5 = 5

U z = I U 6 = 8

U 3 = Z U 7 = 13

S z is defined by the observations at the two points

1 !

x I = _, x z - z + (

(10)

21
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and

9b
D(f, Sz ) =

[o, Xz] if f(xl)_>f(xz)

[x 1, I] if f(xl) <f(xz)

The strategy S N

defined for N> 3.

is defined inductively as follows: Suppose S__I has been

is obtained by choosing the points x IS N

U N
x Z = l-x I =

UN+I

UN-I

UN+I

Suppose f(xl)>f(Xz). Then make the change of

variable

UN+I
y = h(x) : x

U N

xI xz
A

0 I "_ ._ UN 1. x
I UN- 1 _ k
I \
J UN+ 1 \ \'<N+ 1

.U

I \ UN- 1 \\

I \ U N %
0 I kS _ 1_ y

YZ

The point x = x Z is mapped to the point y = I, x = 0 is mapped into y = 0,

UN- I

and x = x I is mapped to the point y= Yz - U N . Since the assumption

f(xl)_ f(x 2) it follows that the maximum point is in the interval [0, xz] in

the x domain, or in [0, i] in the y domain. Write f*(y) = f(x) and start

all over again in the y domain, this time allowing YZ to play the role that

x 2 did previously. This may be accomplished by replacing N by N-I, and

then using the strategy *SN_ 1 on the function f*(y). Note that the observation

f*(YZ) = f(xl) has already been made and the next observation is made at

UN-Z Thus, Yl has the role of x 1 with N changed to N-I.
Yl = 1 "YZ = U----N'"

ZZ



I
I
I
I
I
I

I

I
I

I
I
I

I
I
I
I

I
I

I

LMSC/HREC A783333

Suppose instead that f(x I) < f(xz), which implies that the maximum point is

"UN_I + XUN+I

in Ix 1, l]. In this case the change of variable y = h(x) = UN

is made. Note now that x I

x = I is mapped into y = I,

YI"

N-I

Note that Yl plays the role of x 1

and it is now possible to use S N

x I
0 - A

UN- i //-

UN+I// /
/ I

/ I
/ /

" Yl t

UN_Z

is mapped into zero in the y domain, the point

UN_2

and x Z is mapped into UN . Call this point

in the sense that N is replaced by

on the function f*(y) in the-1

x 2
-- 1 X

,r UN
g

UN+I

I y

UN

unit y interval, Since SN__ 1 has been defined (induction hypothesis) the

is complete. Under this strategy the lengthdescription of the strategy S N

of the interval obtained after N observations containing the maximum point

satisfies

L D(f,S N ) < _ +
- UN+ I

just described fulfills theKiefer in Keference 5 proves that the strategy SN

condition (10).

The solution of systems of equations in several unknowns requires the

minimization of a function of several variables. D. J. Newman in Reference 6

attempts to generalize Kiefer's procedure to higher dimensions. Letting k

denote the number of variables {or dimensions), Newman seeks the maximum

value of the unimodal function in the unit cube in k-space, but restricts con-

sideration to the function as defined at the (k+1) n lattice point (n arbitrary).

Z3
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The problem then is to determine a point, not necessarily a lattice point,

which dominates all of the values of the function on the lattice points. In

two variables (k = 2) an explicit procedure is given and it is shown that the

number of observations C(2, n) satisfies

C(2, n) _< 90 log (n+l).

The procedure is quite complicated, but if an additional restriction is made,

viz that the function by cl-unimodal, then a practical procedure exists such

that the number of observations required is

1
C (Z,n) < 10 log (n+l) + 6.

In general, for k dimensions it is stated that the number of function evaluations

C(k, n) required is

C(k, n) _< C k log n.

However, no formula for C k is given in the article for k>2.

2.2.6 Contour Plot

The contour plotting routine is an aid in locating the initial

estimates to the roots of a system. The number of contours desired along

with the grid limits are input by the user. A plane must be selected for all

systems greater than two. The technique employed here is a simplification

to that in Reference 10.

The technique divides the grid into n squares across and n squares

down. The number pairs (x, y), where each grid line crosses, are determined

and the value of the system at each intersection is computed. The largest

functional value is Fmax and the smallest is Fmin. The user's choice of

a scale factor, SF, decides the spacing of the contours between these limits.

24
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If equal increments in F c

and we compute

are required, then a scale factor of unity is input

where

= F + (i+ I)_FFt. rain
I

AF : (Fmax- Fmin)/(N" I).

A scale factor greater and less than unity will group the contours

closest together around a zero and pole respectively. In this case we use

+ (SF)i-I aF (i = Z,...,N)= F ; F = AF
Fc 1 Cmi n c i rain

whe re

AF = (Fma x Fmin)/(SF) N-I

where N is the number of contour plots desired.

The routine numbers each grid line x and y intersection as follows:

7

Z 4 6 8 /

73 75

74 76

• • • • • 006 • • • • • • •

69 71

68 70 7Z

'_ 143
¢
) 144

I'ilZ913 lZ95

1129_4 11Z96
I J
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Considering the first box, the McCue's routine (Reference I0) determines the

diagonal representing the vertices with the least difference:

If f(x I, yl) - f(x 4, y4 ) < f(x 3, y3) - f(x z, yZ) then

but if
f(Xl, yl) - f(x4, y4) > f(x3, y3) - f(Xz, yz) then

1 3

.

This is done for each box.

Then the sides and diagonals are surveyed to determine the location

of the contour value F c. If F 1 > F c > F 2 then a linear interpolation is per-

formed to determine the (x, y) values where F c closes the side (I, Z) of box I.

I Then sides (Z, 4) and the diagonal are tested. Finally, the other half of the box

is tested and so forth through all boxes of the grid frame. The interpolated

I points are plotted, such as

% Ik

/ \

/

By connecting the points, a contour plot is obtained.

In the simplified version, a continuous line is not plotted; only points

along the contour are plotted. This eliminates the principal advantage gained

by including the interpolation on the diagonal. Interpolation on the diagonal

provides directional information for plotting a line contour. Therefore, the

diagonal is omitted from the routine included in the present program. Also,

the present program employs a grid of 35 squares down and 35 squares across.

Z6



I
II

l
I
I
II

I
i

I
I

I
I

i
i

i
I
II

tl
i

LMSC/HREC A783333

It should be pointed out that a tighter grid will result in points so closely

spaced that the result would appear as a continuous line. This might be a

better approach than including the diagonal and connecting points with straight

line segments. For clarity, the printed grid does not have to be nearly as

tight as that employed in the computation. These comments are intended as

recommendations for additional minor program modifications.

An example of a contour plot obtained from the present routine, described

in Appendix C-l, is shown in Figures 4a through 4e. This example is the test

problem described in Section 2.4.1 for closely spaced roots with _ = 0.005. The

point symbols correspond to F c contour values as follows:

No.

F
min

F
1Tlax

S.F.

N

i=l 0

2 0

3 ×

4 o

5 ¥

6 +

7

8 t_

_9 u

10 0

4a

.00319

33.95

1.0

8

.0032

4.85

9.70

14.55

19.40

24.25

29.10

33.95

4b

.00319

33.95

1.4

i0

.0032

2.30

3.22

4.51

6.32

8.84

12.37

17.32

24.25

33.95

4c

.00319

33.95

1.6

10

.0032

.79

1.27

2.03

3.24

5.18

8.29

13.26

21.22

33.95

.00319

33.95

1.8

10

.0032

.31

.56

1.00

1.80

3.24

5.82

10.48

18.86

33.95

4e

.00319

33.95

4.0

10

.0032

.0037

.0053

.012

.036

.14

.53

2.12

8.49

33.95
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Figure 4a - Contour Plot Obtained from Computer Routine
SF = 1.0
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Figure 4b - Contour Plot Obtained from Computer Routine
SF = 1.4
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Figur e 4c - Contour Plot Obtained from Computer Routine

SF = 1,6
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Figure 4d - Contour Plot Obtained from Computer Routine
SF = 1.8
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SF = 4.0
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As may be observed in Figure 4, the printed grid does not correspond to the

grid used in the computation.

2.3 ANALOG AND HYBRID COMPUTATION SCHEMES

Certain aspects of the problem and the methods for seeking solutions

appear to be amenable with the features for which analog and hybrid com-

puters are attractive. Therefore, abrief study regarding such approaches

and the feasibility of a hybrid computation scheme was included.

2.3.1 Analog Solutions

Analog solutions to polynomial equations may be grouped into three

machine-oriented classes: {1) scanning techniques, in which the computer

sweeps the complex plane in a predetermined manner and locates the points

where the polynomial vanishes; {2} nulling techniques, in which the computer

solves the polynomial by finding a path leading to a root such that a suitable

defined error function is reduced to zero; and (3) tracking mode, in which the

computer indicates the variation of a root that was previously determined by

a nulling technique, if one or several coefficients of the polynomial are being

changed. Examples of these methods are found in Reference 11. Problems

are encountered in terms of computer elements and accuracy of solution in

expanding these methods to systems of algebraic equations.

Karplus and Soroka consider many standard techniques for solving

nonlinear algebraic equations on the analog computer although several are

not solely for electronic analog computers (Reference 12}. Potentiometric

machines for real coefficients and roots are evaluated as well as the inte-

grator solution suggested by Prof. C. P. Atkinson in which an n th degree

polynomial is converted into an n th order ordinary differential equation and

then integrated to obtain the various roots. The method of harmonic synthesis

may be employed for solving high-degree algebraic equations with complex

roots. An electro-mechanical harmonic synthesizer, consisting of a poten-

tiometrlc equation solver with alternating voltages of adjustable phase pro-

vided to excite the system, is a possible analog technique. Electric field
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representation of analytic functions applied to solutions of algebraic equations

and electromagnetic field solution may be extremely successful in locating

roots.

A scan method (Reference 11 )for solving for the real roots of a two

equation system is shown as a circuit diagram in Figure 5. Integrators are

used in place of multipliers in order to avoid amplifying the noise level in

the circuit. This method is suitable for finding approximations to all real

roots of a system.

The accuracy of the analog computer is limited by component imper-

fections. A single operation can usually be performed with errors in the

order of 0.01%. A typical large problem may be thought of as being accurate

to about 1%, although such estimates are difficult to derive. The resulting

error can be considered as a noise signal for purposes of estimating system

error.

Static errors are easily assessed and are fairly well known for standard

components. Dynamic errors are more difficult to assess; they arise because

the analog computer elements have non-ideal dynamic response. For example,

even if a summer had perfect static accuracy, errors would arise when the

inputs are changing rapidly for it behaves as a low-pass network.

Johnson (Reference 13)has mentioned problems of solution stability

using standard analog techniques for certain systems of equations. Gephart

(Reference 14} has developed a method of setup of algebraic equations that

ensures computer stability without algebraic manipulation of the system.

The main disadvantage, as is true with virtually all analog techniques, is

that the accuracy is determined by the complexity and size of the system of

equations. The advantage of analog techniques is that no initial estimate of

the root is required.
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2.3.2 Hybrid Technique
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Fortunately, analog and digital computers are essentially complementary

in that the favorable features of one computer correspond to the undesirable

features of the other. The analog computer may be said to have inherent

speed due to parallel operation. Single operations of addition, for example,

are much faster on the digital than the analog. However, considering a series

of many operations, the analog quite often results in a lower cost in terms of

computing time, since the discrete actions of the digital require separate

execution of many different operations to perform the same job as the continuous

acting analog.

The accuracy and resolution of the digital is far superior to the analog.

The decision making capabilities, large available data storage and pre-tested

subroutines and software are among the outstanding features of the digital

computer. The floating-point arithmetic eliminates the scaling required by

the analog.

Among the outstanding features of the analog, we should include the

ability to perform simple, true integration. Unlike the discrete steps taken

by the digital, the analog integrates continuously with time as the independent

variable.

As has been noted in previous sections of this report, when in search

of roots for nonlinear simultaneous equations, our digital routines are plagued

with an absence of information concerning approximate locations of the roots.

As they stand alone, all digital techniques need initial estimates. Even

thoug h they need no initial estimates for roots, our analog routines are

insufficient because of their inaccuracy. A combination of the two is in-

evitable - hence, we select a feasible hybrid computer scheme in which the

analog provides the initial estimates to the roots and the digital refines these

estimates through iterations to some desired accuracy. Truitt (Reference 15)

and King (Reference 1 6)point out many interesting arguments for hybrid

36
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computers. But, necessity has brought the hybrid for solutions to systems

of algebraic equations with the digital as a supervisor and refiner of the

analog. The hybrid computer to be considered is discussed by Truitt in

Reference 17. Figure 6 illustrates the logic flow of the proposed hybrid

computer scheme.

Figures 7, 8, and 9 compare the digital, analog and hybrid routines

with respect to percentage of solution uncertainty and required computer execu-

tion time. In all cases, we see that Fletcher-Powell seems to be superior to

Newton-Raphson, and as the complexity of the system increases, this superiority

becomes even greater. The hybrid routine consists of the analog integration

technique and the digital modular program.

Figure 7 shows that for a four equation system, Regula-Falsi has nearly

located the root before the necessary partials required by the other two digital

routines have been computed. The analog solution has a rough estimate to the

roots in a short time but is unable to refine the values. The hybrid, however,

selects the estimates as soon as they are available from the analog and passes

them on to the Regula-Falsi technique for a very fast accurate result.

In Figure 8 we see that an increase in the size of the system of equations

makes the computation of partials the advantageous mode of solution. The

analog accuracy is even worse now, since an increase in computing elements

has brought balancing problems as well as an introduction of noise.

Figure 9illustrates still less accuracy in the analog and increased

computation time for computing the partials. The hybrid technique, once

again, is preferred.

Evaluation of a hybrid technique consisting of a modular digital program

and an integrator analog program reveals that favorable features of one

program correspond to the undesirable features of the other program.
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Specifically, the need for a search routine to locate estimates of the roots

for a digital program, such as those of Kiefer (Reference 5) and Newman

(Reference 6), are unnecessary on the hybrid computer. Similarly, the

inaccuracy of the analog is compensated for by the iterations of the

digital. Our conclusions are that accuracy of solution, reliability of

method for general purpose use, cost (direct result of computation time

required for acceptable accuracy), and the compatability of solutions with

the physical problem giving rise to the nonlinear algebraic system would

be realized in their maximum state when an analog-digital computer

system is used.

2.4 TEST RESULTS AND ENGINEERING APPLICATIONS

The following discussion is presented to demonstrate the computer

program, compare the different methods on the basis of some test results,

and exemplify the usefulness of such a program. The first subsection

considers several systems of simultaneous nonlinear equations, including

one system with closely spaced roots, while the second subsection is

devoted to an engineering problem of particular interest.

2.4.1 Test Results

Several systems of nonlinear algebraic equations were solved in an

effort to determine the reliability and accuracy of the solution techniques

under study. Following is a list of systems and results of solutions

where the prescribed accuracy is _= .00001.
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.

fl = Xl2 + x2 -11 Known solution: IXl

f2 = Xl + x2 "7 ix2

= 3.5844283

= -1.8481262

The gletcher-Powell technique required four iterations in one second for

xI = 3.5844283
x 2 = 1.8481262

The Newton-Raphson technique required three iterations in one second for

x = 3.5844284
x 2 = -1.8481265

The search routine required 39 iterations in three seconds for

x I = 3.5844284
x2 =-1.8481265

.

2

fl = Xl+12x2-1 Known solution: {x 1 = .14285
f2 = 49 Xl +49 x_ + 84 xl +2324x2 -681 x 2 .28571

The Fletcher-Powell technique failed. After six iterations the routine

became trapped in the minimization process. After six iterations in one second

x = .1370932
x 2 = .2857944

The Newton-Raphson technique required 37 iterations in two seconds for

x = .14291311
x 2 = .28571195 .
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1

fl = Xl+X2+X3-1 Known solution: Ix 1 = 6

f2 = 3Xl+X2"3x3-5 Ix 2 = -7f3 = Xl-ZX2-5x3-10 x3 = 2

The Fletcher-Powell technique required five iterations in two seconds for

x I = 6
xg = -7

x3 = 2

The

.

Newton-l_aphson technique required three iterations in one second for

x I = 6
x z = -7

x3 = 2

fl = IZlx z-32x Z-121 Known solution:
f2 = 7x Z+7xlxz+7xi+70xl-63x2-34

xI = 1.2857
x z 1.5710

The Fletcher-Powell technique required fourteen iterations in one second for

x - 1.2857981x2 = 1.5685939 •

The

.

Newton-lAaphson technique required sixteen iterations in two seconds for

x I = 1.2857746
xz = 1.5816151

i 3

fl = Xl

2
f2 = Xl

2. 7
-3 x% x2+ x 2

2 _4xz +4-4x I +x 2

Known solution:

x I = 1.91475x2 .001817
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The Fletcher-Powell technique required six iterations in two seconds for

x = 1.9147505x z = .0018179036

The

.

Newton-Raphson technique required five iterations in two seconds for

x = 1.9147503x 2 = .0018176978

fl = Xl+Xg+X322 2 -1 Known solution: /x 1 = .785202

If3 = 3x2_-4xZ+x_ x3 .3699ZZ

The gletcher-Powell technique required seven iterations in three seconds for

xI = .78519690

x 2 = .49661120

x 3 = .36992267

The Newton-.Raphson technique required five iterations in two seconds for

x I = .78519695

x2 = .49661139

x3 = .36992283

. fl = Xl + 10x2

)fg = _/_ (x3 -x4)

= (x2 -2 x 3)2

f4 = l%/_(Xl-x4)Z

Known solution: Xl=0

Xz=0

x3=0

x4=0

45



I

I

I

LMSC/HREC A783333

The Fletcher-Powell technique, after fifty iterations in five seconds, obtained

x I = -.49446885 xl0 -2

x 2 = .48518575 xl0 -3

x3 = -.25345917 xl0 -z

x4 = -.25341771 xl0 -z

The
Newton-Raphson technique converged in Z8 iterations in two seconds for

x I = .14646 xl0 -3

x2 = -.14646 x10 -4

x 3 = .38937 x10 -4

x 4 = .38937 x10 "4

The search routine after 141 iterations requiring nine seconds obtained

.

x I = 0

-5
bx2 = .1415963 xl0

x 3 = .8961344 xl0 "8

x4 = .1096351 xl0 "14

f1 : 2Xl-3" 183098861og_(1-x3)/(I+x3) ] -1 23

2 2 2 2 2
f2 1"57079632 Xl (I "xz x3) 1(x3 -x 2)/[x3 x 2 (i +x )]}-5

f3 x 3 -.14271816

Known solution: x I = 0.042591338

x2 = 0.04140015Z

x3 = 0.14271816
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The Fletcher._Powell technique required 18 iterations in seven seconds for

x I = 0.04Z591337

x2 = 0.041400143

x3 = 0.14271816

The Newton-Raphson technique required 41 iterations in twenty-two seconds for

x I = 0.042513292

x2 = 0.041403138

x3 = 0.14271816

The search routine of Nelder and Mead is not used in most of the above

systems because of the difficulty in deriving simplex points. Since there

seemed to be difficulty in solving System 7, described above, the search

routine was employed to help locate an initial estimate for one of the other

iterative techniques. More time and many more iterations were required

for the search routine than for any of the other techniques; however, a

close-to-zero solution was obtained, which is the true solution. Therefore,

because of the difficulty in obtaining simplex points and because of the length

of computations, the search routine seems the best technique to be used

when questions arise concerning the validity of the solution obtained by other

techniq-es.

System Z failed under the Fletcher-Powell technique but was successful

when the Newton-Raphs on technique was used. Failure of the Fletcher-

Powell technique can be attributed to problems in determining the interval

length along the line leading to the minimum. Davidon, in Reference 18,

discusses this problem and his ideas helped to eliminate the failures

of the Fletcher-Powell technique in all but one of the test cases.
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Newton-Raphson has been extremely reliable in all but one (System 7)

test case. The accuracy of the Newton-Raphson technique, however, has

not been as good as that of Fletcher-Powell. Study of larger and more com-

plicated systems (as shown by System 8) indicate the l_letcher-Powell technique

to be more reliable than the Newton-Raphson when the system increases.

Study of System with Closely Spaced Roots

The following system of two equations in two unknowns was adopted for

the purpose of analyzing a system with closely spaced .roots:

fl - xz + yZ _ 1 = 0

Z

fz = x - y- 1 -_ = 0

fl=0

Z

fZ=0

-l+r

Z

Figure 10- Graphs of Two Equation Systems

with Closely Spaced Roots
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There are four distinct real roots to this system (i.e., four intersections

of the circle with the parabola as shown in Figure 10) provided 0 < _ < 1/4.

The spacing between the two roots at the bottom of the figure is _ _1 + 2_ - r

where r = _/1 - 4e= This spacing is approximately Z_for small • and

vanishes for E = 0.

The Fletcher-Powell method for solving this system determines the

minimum points of the function f: + f;, these minima being zero at the roots

of the sTstem. A contour map of f + f2 is shown in Figure 11 for the case

when _= 0 (i.e., when the two bottom roots in Figure 10 coincide). Only the

contours for positive x are shown, the figure being symmetrical about the y

axis. Such a figure is useful for exhibiting the approximate location of the

roots and the important topographic features of the function. For example,

a saddle point is seen to exist at the point (.8, -.5)(and likewise at (-.8, -.5)

by symmetry). At this point the function decreases if one proceeds in either

direction along the dashed line shown, with the equation x 2 = -1/2(y+Z)(y-2),

whereas the function increases if one proceeds from this point in a direction

perpendicular to the dashed line. In anydescent method one starts close to

the desired root such that saddle points, etc., are avoided in the descent.

A contour map of f + fg for the case of a small finite value of _ is not

available yet. Nevertheless, the Fletcher-Powell method was employed,

the starting point being

x = 0.5
0

go = 2.0

After eleven iterations the value of the function was reduced to approximately
-14

2 x 10 , corresponding to

x = .I0012652

y =-.99497470

The method evidently sought out the lower right hand root of Figure 10, the
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2 ½(y+l)(y-Z)X =

X

/
/

Saddle Point

.1 .Z .3 .4 .5 .6 .7 .8 .9 1.0 1.1 l.Z 1.3 1.4

Figure 1 1 - Contour Plots for the Two-Equation System
with e=0 (Two Coincident Roots)
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correct value of this root (for _ = .005) being

x = +.10012619

y = -.99497475

The Newton-Raphson, applied directly to this system and using the

same starting point gave, in eight iterations:

x = .10012613

y =-..99497475

The various iterative techniques will generally fail to distinguish

between closely spaced roots unless the starting point is suitably chosen.

To aid in the intelligent use of any scheme, a good knowledge of the topog-

raphy of the function to be minimized is invaluable. To this end, the contour

plotting routine, based upon the method of McCue, is quite useful.

2.4.2 Engineering Applications

The engineering problems in which systems of nonlinear algebraic

equations arise are numerous and hence it is impossible to consider all of

them, Of particular interest to the NASA/MSFG technical director of this

study contract are (1) computer programs for synthesizing networks with

resistive loads (Reference 19) and (2) solutions of systems of nonlinear

algebraic equations that arise when some technique, such as the Ritz

Averaging Method, is applied to nonlinear differential equations (Reference 1).

The latter problem was considered as a basis for defining the major require-

ments for a computer technique.

R. S. Ryan, in an Aero-Astrodynamic Technical Note (Reference 2),

describes the Ritz Method for a highly nonlinear air spring problem for

both the single-degree-of-freedom and the two-degree-of-freedom situation.

The former leads to a pair of simultaneous nonlinear algebraic equations in

51



i

I

I
I

I
I
I

I
I

I

I
I
I

I
I

I
I

I
I

LMSC/HREC A783335

two unknowns for the required response; the latter leads to a system of six

equations in six unknowns. A detailed review of this problem follows:

Single-Degree-of-Freedom System

The application of the Ritz Averaging Method to solve nonlinear vibra-

tion problems is treated in References 1 and 2. The general second order

differential equation for a single-degree-of-freedom system is

aq + bg( ) + cf(q) = P cos_t

where q is the dependent variable (e.g., a displacement) g(q), in the damping

term, has the dimension of q, andf(q), in the restoring force term, has the

dimension of q. P is the amplitude of the applied force. Klotter, in

Reference 1, writes this in the form

•" (q) KZfE = q + 2DKg + (q) - p cost = 0

where

ZDK = --b K 2 __c. P
a ; = a'P =_ ;T=S'dt

and assumes a periodic solution of the form

D

q = Qcos(V-E)

where Q and ( are constants to be determined•

Averaging Method furnishes the two conditions

271" cost

/ E{'q) } dr = 0IsinT
0

It is shown that the Ritz

These conditions, when the integration is performed, lead to two nonlinear

equations for the unknown quantities Q and _ . He then treats the undamped

case (g = 0) for the following three restoring forces

(a) f(q) = q
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leadhlg to the known solution Q = + P
-- K 2 . .(22

( = 0, ff respectively.

2 3 p2>0 '(b) f(q) = q + /I q , the Duffing equation for a "hardening"

spring.

In this case the Ritz conditions lead to

_QA 3 /12Q2
KZ = I+_- T -P---K2Q

I _= 0,71" respectively

I

I

I
I
I

(c) f(q) = q -

Here the result is

2 3
q , Duffing_ equation for a "softening" spring•

f2A 3 2Q2
K z =i_ T _ ¥_2._KZQ

Curves for these results are given in Figures 1 and 2 of Reference 1.

Duffing equations are also treated for linear damping, g(q) = q .

The

In Reference 2, R. Ryantreats the single-degree-of-freedom

differential equation without damping. In the notation of this reference

i "" o_ (,-.I-" _oD(r]) : q + C0 [ -I] +9 2 sinQt : 0

I

I
I

where

_7 = normalized displacement
c

7 = --P- ratio of specific heat at
C

V

constant pressure to that at constant volume, a constant greater than unity.

i _, To = frequency, normalized amplitude of applied sinusoidal force•

I _o : undamped natural frequency of linearized system.

53



I
I
I

I
I
I

I
I

I
I

I
I

I
I

I
I

i
I
I

LMSC/HREC A783333

An assumed solution of the form r] = M + Q sin 7" is taken, (the additive

constant appears since the restoring force is no longer symmetrical),

so that the Ritz method furnishes

2_T

f D(_}dT"= 0

o

2n"

f (17)sinr dr= 0

o

giving the following two equations for M and Q:

dT"

(I - M - Q sinr) )'

= 2;r

(IZ)

2_r

/o s inT dT

(i - M - Q sinT) 7
= =rZT(Q - _:o)

Z S22 Z Z
where r = --_ , 60 = COO )'. Solutions (M, Q) to these equations for

co

}'= 1.0, I.I, .1.5, 2.0 as obtained by analytical means and various com-

puter techniques are derived and the results are plotted as a function of r,

in Figures 12 and 13. Only the M curve is given, the Q curve being very

similar.

These solutions for (IZ) have been obtained as followg:

a. 9'= 1.0

0

Consider Equations (iZ) for 7= 1.0.

54
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1.1 1.0

Backbone Curves

= 1.0, I.i, 1.5, 2.0

M Only

.8 1.0 1.2

Q
r =

6O

Figure 13- Backbone Curves
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therein are readily evaluated.

2_T

I-M-Q sin'/" I.M)Z_QZ I/2

I 21r 2n"

fo sin, d'r 1 of
I 1--M- B'_in'/" = -

I-M-Q sinT- (I-M) dT
I-M-Q sin'/"

['-.[<,__,>,-'_->_,-],/,]
and Equations (12) reduce to the two algebraic equations

(I_M)Z . QZ = I

ZQ_o Q) aM 0r - - --

The solution to Equation (13) for _o = 0 is readily obtained:

I

I
I

I

M=2 2 _1- r20_) ,o:+-_,

These results give the backbone curve. The plot Mvs r is shown in

Figures IZ and 13. For non-vanishing values of To, one may eliminate Q,

for example, from Equation (13) and obtain the response in the form

r vs M as

I

I
r --

2M ,]I/_z - 2M _'o"(Mz" 2M)

llz

I 57
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i
Note that

i Q = +_..¢M 2 - aM

I Equation (14) is plotted for _o = .2 in Figure 12. The curve to the left of the

i backbone curve corresponds to Q<0. The curve to the right of the backbone

curve corresponds to Q>0.

I
I

I
I

I

I
I
I

The Newton-Raphson program was applied to Equation (13) with $o 0,

.04, .1, .2 to determine M and Q for different values of r. Very precise

results were obtained, and the roots for $o = .2 were found to agree with

response curves of Figure lZ.

b. Y= I.I

Q
Letting c = 1----M '

1-M =

1-M =

the Equations (12) may be written in the form

1 dT ' T

(l-c sinT)Y
0

z;r

2 f sin'r dT L
o (1-c sin'f)'/ +-

rZYc fzrr dT c
(l-c sinr)Y

0

(15)

I
I

I

These two expressions for 1-M were calculated for _= 1.1 using a Runge-

Kutta-Gill routine, with c as the independent variable and r as a parameter,

and To = 0. The two functions were plotted, and the intersections were

accurately determined, leading to precise numbers for M and Q vs r.

The backbone curve for M is plotted in Figure 13.

i
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A simple argument for small values of IV[,Q in Equation (15) shows

that the backbone curve touches the r axis at the point r = I, for all values

of y.

c) y = 1.5

In Equation (12)

the two equations become

3 k Z = -ZQ Q< 0. Then
let y = _, andput I-M-Q '

4k 3 E(k)

(_ZQi3/Z(l-k Z)

= Zrr

z)
8kK(k) + ZTr (1-kZ + =rZv (_o- Q) = 0
(_ZQ)3/z

(16)

where E and IK are the complete elliptic integrals

7r

I K-/o

f_ V -kZ ZE = I sin

o

dx

Vl_k z sin x

x dx

x

I

I

I

From Equation (16) and the definition of k z ,

1 /2_ z/3 k2 E(k) 2/3

o = " _ _-9-] (l.kZ)Z/3

3
and using y =

!
I

I

M = I+Q (k_-l)

2 2 1

r : -_ (Zo_Q_.,

k2 E(k) (I-_) + ZK(k) (l-k z)

kz E(k)

59
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For various values of k, a computer program determined (3, M, r z from

Equation (17) and plotted M and Q versus r. The M curve is shown in

Figure 13. Again _o = 0.

d) Z = Z

ated as

When y = Z, the two _ntegrals appearing in Equations (lZ) are evalu-

I
I

I

z= {l-M)

[(I_M)Z- QZ] 3/2

Z;rQ

respectively, so that Equations (12)lead to the pair of algebraic equations

(I-M)z QZ]3/Z- - I-M

i
I

I
I

z -Q) + Q : 0r (¢o I-M

m

These equations are readily solved when _o = 0, yielding

1
M = 1 _m Z

r

r

(18)

(19)

I

i
I

The M response curve is plotted in Figure 13. Observe from Equation (19)

that M = 0 when r = 1, confirming what was stated earlier about the inter-

cept at r = 1. Also, values of r > 1 are not allowed, for otherwise Q is

imaginary.

I 6O
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Inasmuch as the integrals in (12) cannot, in general, be expressed in

closed form, the approach adopted in Reference 2 is to employ a polynomial

approximation to the restoring force. Specifically a fifth degree polynomial

5 i
p5(r;) = _ air; , with a 1 = 1, approximating (I-;7)-Y-1 in a least square

1

sense in the interval -2<__r;<__.7 is employed. Plots of the restoring force

and the corresponding polynomial fit, as developed at HREG are presented

in Figures 14, 15, 16, and 17 for 7 = 1.1, 1.2, 1.3, 1.4. The numerical values

of the coefficients a. are also shown. The polynomial fit permits the
1

(1-M-Q sin';') -)' factor in(12)to be written as a polynomial in M and Q.

The integrals in(12)may then be evaluated as polynomials in M and Q,

and the Equations (12) reduce to the following pair of algebraic equations:

Q2 Q4
8 P5(M) + 4 P3(M) + 3 PI(M) = 0

r Q2 5 Q52 , (_o_O) + P4(M ) Q +__ pZ(M ) +T a5 =0

(20)

where

P5(M) = y]_ a._ M i

P4 (M) = al+2a2M+3a3M2+4a4M3+5a5 M4 = P5'(M)

P3(M ) = a2+3a3M+6a4M2+lOa5M3 =--2-iP5"(M)

P2(M ) = a3+4a4M+lOasM2 =-'6-ip5,,,(M )

1
PI(M) = a 4+5a 5M = _ P5IV(M)

Equations (20) are written out in full in Reference 2. To make this report

as complete as possible, they are repeated here as follows:
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ETA

Figure 14 - Restoring Force (i-_7) -y-I and Polynomial Fit, for _' = i.I
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-1 and Polynomial Fit, for y = 1.3

64

#6OlgO

003 000



I

I
I
I

!
I

I rU
N

C

T

! '0N
0

T

&

I
I
I

I
I

I

I

I

I

LMSC/HREC A783333

ETA

Figure 17- Restoring Force (i-_)-_'-I and Polynomial Fit, for _' = 1.4
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System of two equations in two unknowns:

8(aiM + a2 Mz + a3 M3 + a4 M4 +

+ 3(a 4 + 5a5M)Q4 = 0

-rZ(-_o

a5M5 ) + 4(a z + 3a3M + 6a4 MZ + 10a5M3)QZ

3
+ Q))'+ (a I + ZazM + 3a3 Mz + 4a4 M3 + 5a5M4)Q + _(a 3 + 4a4M

0a5MZ)Q3 5 5Q5+ 1 +_a = 0

These algebraic equations were solved by the method of steepest descent by

R. Ryan, and the response curves, showing M and Q versus r, are to be

found in Reference 2. His result for M versus r for T= 1.1 is given in

Figure 18. Within the aforementioned limitations on the polynomial fit,

these results compare favorably with those obtained analytically from Equation

(12) as explained in the previous paragraph.

Two-Degree-of-Freedom System

A two-degree-of-freedom system, involving the same nonlinear

restoring force, is discussed in Reference Z. The following pair of

differential equations, in the dependent variables ZI, Z2 is obtained.

Di : AilZl + A i2z2+ K_ 1 [(l-Z I)-)'-I] +_ [(1-Z 2)- ?-l 1

+ i sin7 + E i cost = 0, i = l,Z

(Zl)

where the coefficients are defined in Reference Z. Assuming a solution of

the form

Zi = Mi + Qi cost + R i sin7 , i = l,Z (22)
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where Mi,

six relationships

Qi Ri are to be determined, the Ritz method requires that the

/_ 11
COST

Di(Zi) |sinT
O

dT = 0, i = 1,2 (23)

mus t hold.

I
Substituting Equation (22) into (21)and carrying out the integration in

Equation (23), the result is:

I

I

Z1r 21r

___/I_/ fl dT + -_--KIg/fzdT = _(Kll + KIZ )

O 0'

zn- 2n-

i T T fz -- +

I _ 271" _ 2_"

I iI_2 12.(22 cost dT + KI2

= 0

K21 / cosTdT + K22
I "AzI_22QI rr - Azz_ZQ2 rr + _ fl T f2 c°sTdr

| o o

= 0

-/ -KII KI__._Z
I -All_22RlZr " AIz_2ZRzzr + T flsinrdr + y

I o

7./.. , •

f2 sinT dT

O

= 0

I
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I -- Z;r

K21 / K22 _;r
I -AzI/22KI _ - AZZ/22RZ It + _ fl sin'l"dT + _ o

fz sin'/"dr = 0

Usir{ Z the abbreviations

I j. =

1

!

m Ci =

!

m Si =

2_7

/
o

f.dr
l

Z_7

fi COST dr

O

2T:

f fi sinr dr

(Z4)

I where

I f. = (I-Mi-Q i cost - i_. siny )-)'
1 1

! the six-equation system may be written

! R 1iji + Phzjz = z= (R 11 + R1z) (Z5a)

i RZIJ I + RZZJ z = z= (Rzl + RZZ )

-_2lr (AIIQ 1 + AIZQ Z) +--_ C 1 + _ CZ =

| - _
KZ 1 KZZ =

-gz"(AzI_I+ AZZQZ)+ -7- ci + -7-" cz -_2Z[oEz=

| - _
- K11 K1Z = _/2Z_oB IS'-/2Zn'(AllR 1 + AIzQ Z) + _ S1 +--_ S z

• __/ KZZ = -_Z_oB Z=I -gz=(AZIRI+ AZZRZ)+ sl +-7- sz

I 69
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The first two of these equations imply immediately

J1 = J2 = 27r . (Z6)

When 7 = 1.0, the integrals (24) may be evaluated as

-1/z

Ji = z'r[(l"Mi )z- oZ "RZ]I

27rQi [
= i2 -I + (1-Mi)Ci R.Z +Q

1

{ (l-Mi)z - O 2 _ R.2}
I

R.

S i = _ Ci

(see, for example, Reference Z0, Table 69, No. 17).

-i/z

(27)

Hence, for 7 = 1.0, Equation (20) implies

_I-M/-Qz_R_=1. _:1,z (Z8)

Consider the case _o = 0 (This gives the "backbone" curve), with 7= 1.0.

In this case it is possible to reduce the system (Z5) to a system of three

equations in three unknowns. Eliminating C z from the third and fourth

e qu ations,

_2rr
(RtzAzl - RzzA 11)O1 + (RlzAzz - EZZAlZ)OZ]

+ _ (KllK22 - KzlKI2)C 1 =0 (zg)

and S 2 from the fifth and sixth,
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I

I
I
i

I

I
I

_2_. {_IzAz I . _zzAII)R l + (_IzAz Z . _zzAIz)Rzl

i m

+ 7(RllKZZ - KZlKlz)Sz = o

and then multiplying (29) by

S
1 R 1

=_11 and subtracting (30), it is

observed that

QIRz - RIQ 2 = 0

(30)

(31)

In view of (ZT), (31), it follows that

ZlTQI [ RI z QIZ) I/z ] R1
CI : R'21 + Qi2 -i + (I + + ' SI =_II CI (3Z)

!

I [-,+/,+-<,<,:+o,'>,
(R lZ+Q lg)R2 R 12

J Rewrite (30), (Z5e) and (Z5f),

I _Zn" [(_'_lZA21 - _"22All)Rt + (_'_lzA2z - _'z2Alz)R2] +

m

KIZ- =
I f2Zlr (AIIRI +AIZRz) _II S1 _ 3 2 0

i m i

(KI IKzz - Kz2KI 2 )= 0

(33)

K21 K2 =
I QZIT (AzIR 1 + AzzR 2) "_ S1 "_-_Z 0

I

I
I

With the above equations for Si, the three equations. (33) are a system

of three equations for the unknowns R 1, R z, O 1. After solving these, QZ

is found from (31) and M 1, M 2 from (Z8). Thus a precise solution to the

problem for the case )' = 1.0 is available.

I
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For general values of Y, the integrals Si, C i appearing in the system

(25) cannot be written in closed form. If the polynomial fit to the restoring

force im5(r]) _ (I -U )-Y - i is invoked, these integrals are readily evaluated,

and the system (25) reduces to six algebraic equations for Mi, Qi' Ri" These

equations are written out in full in Reference 2 as Equations (84-89), however,

to make this report as complete as possible, they are repeated here as follows:

System of six equations in six unknowns:

2

i=I

+ 10a5M R +--_- asMiQ R = 0

2

i=l

:: ::]+ 10a5M R +--_- a5MiO R = 0

I 72
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QZ

2 2

i=l i=l

3 a3Q3+ ZazMiQ i +_"

i
I

I
I

I
I

I
I

I
I

I
I

.QZ

_z

3 a3QiRiZ + .3a4MiQ3 + 4a4M3Qi + 3a4MiQiRi z+ 3a3M_Q i + _-

_o _o_ +_o_?+-_ T

+ -_ a5Q R = 0.

2 Z

[ _ _ [
i=l i=l

+ 3a3MiZQi + _"

_o _o_ +_o_?+2-4"

+-_a5Q R = 0.

R 3 a3R3i + ZazMiRi + 4"

Z

[- _ 2hiRi + a _L sin "] + _ Eli

i=l

+ 3a3MiZRi + -_

_o__b_ +_o_o_?+_-4" a

+ l-_asQ4Ri] = O.
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l
" AziRi - &o sin _ + K2i R i + ZazMiR i + _-

i=l

I
I

I
I

i
I

l
I

I
I

I
I

l
I
I

+ 3a3Mi2Ri + _-

_o_o_ +_o_o_+_-_ -_-

+ -_a5Q i R i = 0.

All of the known methods for solving systems of nonlinear equations

require prior knowledge of the approximate location of the roots of interest.

In the two equation system discussed earlier, such knowledge is available

from the known analytical solution for )'= 1.0 discussed at that point and

presented in Reference 21. The solutions for )'= 1.0 form a good starting

point for obtaining solutions for )'= i.i, for example.
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Section 3

RECOMMENDATIONS AND CONCLUSIONS

This report is as complete and self-contained as possible. It includes

all of the significant content previously documented in the bi-monthly progress

reports, References 21 through 27, as well as the final result. This final

result is a composite computer program for solving an arbitrary system of

simultaneous algebraic and transcendential equations. The term composite

is employed to account for the fact that the program is a combination of

techniques. These techniques are called the Newton-Raphson, l_letcher -

Powell, Simplex and Contour Mapping. Such a program provides a spectrum

of different approaches for seeking a solution and hence the capability for

solving widely diverse classes of equations.

In applying this program to particular problems, it may quite often be

useful to use one technique as an aid to another. For example, the simplex

method could be used in some cases to determine a sufficiently close esti-

mate of the root for either the Newton-Raphson or Fletcher-Powell method.

The contour mapping routine may be used to obtain useful information re-

garding approximate location of the roots, division between closely spaced

roots, number of roots, ridges, valleys and saddle points. Such knowledge

is often required in order to avoid convergence problems in applying any of

the other three techniques.

In addition to solving systems of nonlinear equations, another useful

application of this program is in minimization (maximization) problems.

The Eletcher-Powell, Simplex Method, and Contour Mapping methods are

bas ically minimization technique s.

The principal conclusions of this study, regarding convergence problems,

separating and identifying roots are:
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I. The selection of a particular method for a particular system

of equations is frequently essential.

2. An initial guess for the solution is always essential, and quite

often it must be sufficiently close.

It is therefore recommended that future study be directed largely toward

techniques for obtaining useful information which would provide a firm basis

for selecting a particular method and an initial guess. This information

should include the number of roots, approximate location of roots, division

between closely spaced roots, and certain features of the function's contour.

These methods could be developed as companion routines to the present

computer program developed under this contract.

Possible approaches to the problem include: (i) automatic contour

mappings, (2) extension of Cauchy's Integral Theorem, and (3) application

of the Sturmian Sequence Rule. The first approach has been included in the

present program, however, only a rudimentary technique was used. The

decision regarding the necessity of such complimentary information was not

made until late in the study and of course this was not the principal objective

of the present contract. Therefore, further development of the contour

mapping approach should yield some valuable results. The second and

third approaches are discussed briefly by Hochstrasser. (See Item 17 of

the Bibliography, Appendix A.) In developing techniques for applying any

of these approaches to higher order systems of equations, the principal

considerations should be computer requirements and tractability.

Hybrid computation schemes also appear to be an area in which future

study would yield some significant improvements. The attractive features

offered by modern analog and hybrid facilities, such as patchable digital

logic and on-line displays, are particularly amenable to the gradient and

search methods. In fact, these same features would be quite useful in

obtaining the preliminary knowledge about a particular system of equations

that is frequently essential.
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In considering the extent to which the composite computer program en-

compasses the complete spectrum of basically different methods, there is

only one method that has been excluded. This is a random search method.

Such procedures were not included bacause they are more amenable to high-

speed, repetitive analog facilities than the digital facility for which the

present program was developed. Such a method would normally be preferred

only if all other methods fail. It is of particular value when the gradient

cannot be determined, however, in this case, the simplex search should be

a satisfactory alternative.
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APPENDIX B- 1

COMPOSITE PROGRAM USER'S M_ANUAL

There are two types of input to the composite computer program for

solving systems of nonlinear algebraic equations. The first type of input

consists of the system of equations to be solved, while the second type is

made up of pertinent option selectors and required initial information con-

cerning the system to be solved by the Nonlinear Equations Program (NEP).

SYSTEM INPUT

The system of equations to be solved is input directly into the program

deck in the subroutine entitled, EVAL. (See Figure I.) The user must punch

the system on 80 column punch cards in the Fortran IV compiler language

using Columns 7 7Z and place the cards in their proper location in the

Subroutine EVAL. If the equation should require more columns, a number

(i - 9) is placed in Column 6 and the previous card continued. All variables

such as x, y, z ..... must be re-named X(1) for _ x, X(2) for y, X(3) for z,

.... and all functions such as f, g, h ..... must be re-named F(1) for f,

F(Z) for g, F(3) for h ..... As an example, consider the system

f(x,y,z) : x + y + z - 1

g(x, y, z) = 3x + y - 3z - 5

h(x, y, z) = x 2y - 5z - I0

which would be written for inclusion in the Subroutine EVAL as

F(1) = x(1) + x(2) + x(3) - 1.

F(2) = 3.. x(1) - x(2) - 3. , x(3) - 5.

F(3) = X(1) - 2.* X(2) 5. * X(3) - 10.

BI-I



I
I

I

I
I
i

I

I
!
I

I
I

I
I
I

I
I

I
I

LMSC/HREC A783333

The maximum number of equations allowable is 20. Although the gradient must

be defined analytically when using Feltcher-Powell or Newton-Raphson, the

user need not derive the equations since the program computes numerical

partials using the functions as input. (See the sample run for an example of

proper system inclusion.)

OPTION AND DATA INPUT

The MAVRIK input package is utilized for data input from punch cards.

All desired input parameters are placed on 80-column punch cards beginning

in Column Z and extending through Column 72 with additional cards added as

needed to complete data input requirements. A slash mark (/) indicates the

end of input data.

All input parameters have been given names or symbols and are assigned

numerical values by equating the symbols to the values desired; e.g., METHOD = 3,

POINTS = 21., 3.4, 5., creates input data for METHOD equal to 3, and the first

three variables of array entitled POINTS equal to 21., 3.4, and 5. {POINTS (1,1)

= Zl., POINTS {2,1) = 3.4, POINTS (3,1) = 5.) All arrays are assigned values by

columns, hence the innermost subscript varies first of the doubly subscripted

variables. To skip to later variables in the array, one can write POINTS + 2

= 20., 13., which assigns values to POINTS {3,1) and POINTS (4,1). To skip to

variables in the second column of the array, one must add the number of ro4vs

in the first column in order to get to the second column. For example, POINTS

is dimensioned {21, 20) so the first element of the second column {POINTS (1,2))

is POINTS + 21 and POINTS (2,2) is POINTS + 2Z.

Input data is in the floating point format and input options are in the fixed

or integer format. A decimal point must be included in all floating point fields.

A comma must follow each numerical value regardless of format. Blanks may

be placed throughout the input data for ease in reading as long as symbols and

numerical fields do not contain blanks among their elements; e.g., 805 not 80 5,

XL not X L. However, XL = 805., POINTS = Z5., 31., 65., 21., 23., are

BI-2
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acceptable. Note that Z8.3 , and 5 , are treated as 28.30 and 50, respectively.

If an integer 5 were desired, the comma must follow the 5 with no blanks (5,).

hput Options

There are four input options the user may select.

solution and one contour plotting technique are available.

Three methods of

Option Selector

Method

1

2

3

4

Technique Selector (Integer Variable 1

means use the Fletcher-Powell technique

means use the Newton-Raphson technique

means use the search routine

means construct contour plots

Input Data

The selection of certain methods require specific additional information.

The letters following the input data symbols indicate which options require the

data in question: (F) Fletcher-Powell, (N) Newton-Raphson, (S) search routine

and (C) contour plots.

UKNOWN (F, N, S, C) =

ORDER (F) =

XINITL (F, N) =

DEL (F, N) =

N where N is the number of unknowns

the system has (an integer variable).

K where K is the order of the system
(an integer variable).

X N where X N is the array of initial
estimates for all unknowns (floating

point variables dimensioned (20)).

AX where AX is the increment to be

used in computing partial derivatives
of the system with respect to each
unknown (floating point variable).
Set to .001 if not input.
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EPS (F, N, S)

POINTS (S)

ALPHA (S)

B ETA {S )

GAMMA (S)

ITEST (F, N, S)

XL (C)

XR (C)

YT (C)

YB (C)

N (C)

SF (C)

SAMPLE COMPUTER RUN

F(X, Y, z)

G(X, Y, Z)

H(X, Y, Z)

LMSC/HREC A783333

where _ is the accuracy criterion

for termination of iterative techniques

(floating point variable). Set to .00001

if not input.

P{j where Pij are simplex points and
1 = j is the size of the system

(floating point variables dimensioned

(21, Z0)).

a where 0_ is a reflection coefficient

(floating point variable).

fl where _ is a contraction coefficient

(floating point variable).

7 where _' is an expansion coefficient

(floating point variable).

J where J is the maximum number of

iterations to be allowed in solving for

roots (integer variable). Set to 50 if

not input.

xf where xf is the left most x value
for grid construction (floating point).

x r where x r is the right most x
value for grid construction (floating

point).

Yt where Yt is the top most y value

for grid construction (floating point).

Yb where Yb is the bottom most y
value for grid construction (floating

point).

n where n is the number of contour

plots desired (integer variable).

scale factor when unequal increments

for the contour values are desired.

(floating point)

X Z + yZ + Z z . i.

ZX z + yZ _ 4Z

3X z - 4Y + Z z

B 1-4



I

I
I

I
I
I

I

I
I
I

I
I

I
I

I
I

I
I
I

LMSC/HREC A783333

Program Listing B-I shows the necessary conversion of the above system

to Fortran IV and propoer inclusion into the Subroutine EVAL. Program Listing

B-Z i11ustrates the input data cards for solving the system.

Program Listing B-3 shows the intermediate output as a result of

rising the Newton-l_aphson solution technique.

Program Listing B-4 shows the solution to the system.

B1-5



i

i
I

i
I

I

I
I
I

I
I

I
I

LMSC/HREG A783333

PROGRAM LISTING B- 1

C It, kNS I

I" I_'FNS I

LF ( ME TH
ICPL_T=

IFLAC=C

C_NTINU

x( If _'UN

IC C(_aI INL
C-I,,_IIE Ib{ S'_

C F(I}=X{

C FI2I=X(

C FOia II'-E SYS

C

C

- kFN SPUnCE SI_TEME_I - IFN_S)

iNF EVAt. {X,FXg,GX2,F_)

IINITI IS,IN,CEL, EP <. ,

gN X(20},F(gC},GX2(2C}

ON FI{ 20), t_Fl(20)

,'t:..__Q.4_IGo..]_ LQ....
I

I_EIHOD,IIFR

,P_B (2C,2C) ,OF (2C)

O

T)=/(ICOUNT}+CEL ............

STEM BEG ['NNT_G°"I_-C-_EUNN--7'-W[ T_-'-__R'IABLES"'AS X{ T)

I).,2+_(2)-IIo ..............
21.'2+>{I)-I.

TEN

X.._+Y-tI.=o.

Y**_+X- 7.=0.

C---_ILlE R E............................................................

C x=x|l)

C Y=X(2}

C

C PLACk S'rSTEM BEIWF_!_ I-ElSE

........__(l)-_.x__!.)*.2+.K!_K)_.*__*.__+__.(.!.)_::.__-l. .....
F(P):2.'X(I)''2+X(g)"_Z-4."X(_)

F (-_J=:'.•*x(L!,.,_.T._.*X(__)-,'X.U)_,_.............
C _hO HERE

C

IF(PET-F_D ;EQ. 4) FX2=-F(1) .................

TF..(_eT_FZ.C....EQ...9._L.R.eTL_..R._ ....................

|F(IFLaG .EC. I) C-g T_ ICC

FX2=C.

GX2(I)=C.

FI{I)=F(1)

F x 2_.=F X_.2+___(.[ ).___ .2...................................................
I FLAg= 1
IF(_IETF_'_ .EQ. 3) RtTLRN

100 C_NIINUE

IF(M_TF'Z[: .EQ. 2) (;_ Ig-2CC .......

........ c e ; _.c___.L=L EL.S_..................
CFI({)=(F( [)-FI(II)IOEL

120 C-X2 (IC_UNT )=GX2( IC_:LNI )+2.'F1 (I) ,DFI( I )

121 X ( IC .?,t._T) = x ( Ic _)uK T }-P,EL

IC_,L.RT = ICOLRT_ i

-- IF(ICg, LNT .LE. IS) _Z T'/ =....

R ETL,_,N

"_0o ce_o¢-t--f,Tg ........................
CFI{ I):(F(1)-_ i{I ))IDEL

CX2(1)=FI(I)

205 PAR ( {, IC)_UhT} =OF1(I }

6Z IC 121
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PROGRAM LISTING B-2

XINi-TL_'5, .l'.l,
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O_L=.OOb, LPS=.OO060;; ...............
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PROGRAM LISTING B-3

NE_l_ R_FFS_ METH_C SELECTEC*am_._.*_

.......SF_C .. C.493_ECCCE C5 E6CSEC c. z5_<2_I _cE _c.K........

DELT_ X = ...... 0.IIE14_C6_ Cl ..... _ = ........... C.148144C(E C! ........

DELT_ X = 0.52_C7756E CC .......__ =........ C.623C7755E CC

DELI_ X = C.33]ES31eE CC X = C.471_$317E CC

DELI_ X =...... -:O..S2,__.4_R_(.2K C_C________- ........... C.c_2_71S4E CC ......

DELI_ X._= -0.IIS6C537E CO X : C.5C347217E CC ._.

DELI_ X : -0.58c. 3C4_6_-C I X = C.372_62_IE CC

I

I

DELI_ X = -0.15_57_11F C C____X. : .........C.SCC3g3E2E CC

DELI_ X =

DELTm X =

DELl_ X =

-0.28_4C838E-C2 X = C.36SS3862E CC

-C.15(C566CE-CI )_ = C.7_38_15E CC

I DELI_ X = -0.37_573C5E-C4 X = C.4q_611_SE CC

DELI_ X = -0.1533664CE-C4 X = C.3_S22E_E CC

I

I

DELI_ X = -O.IgCSP, 2_IE-C3._ X =

OELI_ X = -O.lOC2CeC_E-C6 ......X_..= ._ .

DELI_ X : -0.49(38363E-C7 X =

C.78519756E CC

C.4S(6113SE CC

C.36SS22E2E CC

I

I

DELI_ X = -C.6155446_E-C6 X = C.7eEIS6S _.E CC

DELTA.X : C.$2__$4171E-C8 ........>_: ........C.4S_6112SF CC

DELI_ X = O._IIS31E3E-C8 X : C.3_SS22E3E CC

I

I
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PROGRAM LISTING B-4

c.?efi I_3F. CO

C.4____.__1139E CO
C. 36c,92283E CO
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APPENDIX B-2

FALSE-POSITION PROGRAM USER'S MANUAL

This program is designed to find the roots of the equation F(X) = 0

where F is a function defined through a FUNCTION subroutine. Moreover,

the subroutine ZEROS is provided with a tool called recursivity which

enables it to solve a set of several implicit equations such as

F(x, Y, z, ...)=0

G(X, Y, z, ...)=0

H(X, Y, Z, ...) = 0

Method

Three steps are to be distinguished.

,

ZP

An iterative process in order to find a change in the sign of the

function. This process may be carried out through an arithmetic

or a geometric iteration.

When a change in the sign has been found, one of the following

methods is used in order to reduce the interval in which the

root lies :

a. if a and b define the bounds of the last interval refined by

2 above, an approximation of the graph of f on the interval

(a, b) is the straight line g(X) joining the points (a, f(a)l and

(b f(b)). If the evaluation of the slope of g(X) is within prescribed

precision, a new pointc of the interval (a, b) is selected where

g(c) = 0 and f(c) j 0 (or c is the root). The smaller new

interval is (a, c) or (c, b) depending on whether f(a), f(c) < 0

or f(c), f(b) < O. Hence this method will be elected if the

slope of the straight line g(X) is varying slowly and can be

computed within desired accuracy.

B2-1
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Do if f is rather small in the interval Ca, b) and consequently a

precise evaluation of the slope in "a" above is impossible, a

constant weak slope is tried in an attempt to approach f on

the interval Ca , b) with a straight line and thus, determine a

point c on (a, b) closer to the root. Hence a new interval

smaller than Ca, b) is determined.

The choice between those two methods is determined before each

iteration through a series of tests on the results of the former

iteration.

The output process: Before each iteration, tests will be performed

in order to determine whether or not the output process has to be

started. It will be started in four instances:

a. FCX} = + normal zero. A solution has been found.

b. the interval around the root is less than or equal to the

absolute error corresponding to the precision defined in the

calling sequence.

c. there is no solution in the given interval. (See Error Messages.)

d. an error has been committed in the calling sequence. (See

Error Messages. )

The subroutine ZERO is to be called as a Fortran IV subroutine

through the calling sequence:

CALL ZEROS (X, XT, FXT, RATIO,

6HTTPPRR, FONC, X1, X2,...,

or through its MAP expression.

PRECI, XMIN, XMAX,

xg, Xl0)

Description of the arguments listed in the calling sequence:

The argumentX, FONC, X1, X2 ...... Xl0 must be written

with identifiers. The others Cexcept the Hollerith arguments)

can be identifiers or constants according to the wish of the pro-

grammers.
B2-2
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RATIO

PRECI

XMIN

XMAX

6HTTPPRR
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argument of the function on which the search of the root

is performed. After the return from ZEROS, the location

X contains the value of the root.

when ZERO is called, XT must be equal to an approximate

value of the root if the programmer knows this approximate

value. Otherwise select XT=0.

the corresponding value of the function. Otherwise select

FXT = 0. After the return from ZEROS, XT and FXT

are set to the values computed during the last step of the

iterative process, so that the program is initialized

for the search of a new root.

must be chosen positive for an arithmetic iteration, greater

than 1 for a geometric iteration.

relative precision to be obtained on the variable. The

maximal precision is the one of the computer, i.e.,
-27 -8

Z = 0.74.10 .

lower boundary of the interval where the search of the

root is performed.

upper boundary of the interval where the search of the

root is performed.

this represents a code of six Hollerith characters, divided

in three groups of two letters and defining:

TT: the type of iteration

either AR: arithermetic iteration Xn+ 1 = Xn+RATIO

or GE: geometric iteration Xn+ 1 = Xn *RATIO

PP: either the position of the initial value XT with

respect to the root

B2-3
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IN

SU

e ithe r

CR

if XT < ROOT

if XT > ROOT

or the direction of variation in the interval of study

if the function is negative before the root,

positive after,

DC if the function is positive before the root,

negative after,

UN if the direction of variation is unknown. In this

case the subroutine will manage to search the

root in the direction along which the absolute

value of the function is decreasing.

RR: when an exact value of the root has been found, this

code enables the programmer to choose between the

two values of the variable around the root, through

DF the lower value,

EX the excess value,

BO the best of those two values {i.e., the one for

which the function takes its smallest absolute

value).

Examples 1 ) 6HGEINBO

2) 6HARUNEX

FONC

XI, XZ,

this is the name of the FORTRAN IV function which

calculates the operator which is to be zeroed. This

function has at most ten arguments; some of them

are variables on which the search of the solution is

performed. The others are mere parameters whose

value is given before calling ZERO. The name of the

function must appear within an INTERNAL instruction

in every program, subroutine or function using ZERO.

The function must be defined through a FUNCTION

subroutine (see EXAMPLE).

X3 ..... X10 names of the arguments of FONG. They

are FORTRAN variables {see before).
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Recursivit}:

This tool makes it possible to call ZERO from the

subroutine FUNCTION which has been called by

ZERO its elf.

MAIN

ZERO

FONC1

ZERO

FONC2

ZERO

1 st Stage Znd Stage 3rd Stage

FONC3

To each stage of the computation corresponds one block of

instructions and parameters, which is generated through a macro-instruction.

In order to save cells, it is possible:

B2-5
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I)

2)

to set the number of blocks (or order of the recursivity) equal to

the number of equations in the system to be solved.

to set the number of arguments in the functions equal to the

desired number. The instruction to be modified in order to

realize I) or 2) are written under the label "parameters of

dimension" (see listing):

N SET 10

NNN SET N + 16

SIZE BLOCK (1,2,3,...ETMAX)

1) will be realized by setting ET1VLAX, in the address part of the

SIZE instruction, equal to the number of equations in the system.

2) will be realized by setting the number of arguments in the

address part of the N instruction.

Example: for a system of 2 equations with 3 arguments

N SET 3

NNN SET N + 16

SIZE BLOCK (I, 2)

Restrictions

For reasons of accuracy and feasibility, it is not advised to use

the subroutine ZERO for systems which contain more than four equations.

Beyond this number, the accuracy of the result depends a great deal on the

sophistication of the equations and the run time becomes excessive.

Examples (precision desired: 0.000001)

Type of Problem Duration (sec)

llth Order Equation 0.017

Two Equations (of l lth order) 1.60

Three Equations (of l lth order) 3.Z0

Precision Obtained

0.000001

0.000001

0.001
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The results were obtained for highly sophisiticated problems and can be

considered as upper limits for each type.

Remarks

I. The subroutine can solve any system of equations as long as they

are continuous with respect to each variable in the interval of

study. But the programmer must pay attention to the salient

features of the system he wants to solve.

Generally speaking, the subroutine ZERO will not find a solution

when the four following cases occur:

a. the system has a multiple root; this can be easily detected

by the programmer by carefully studying the equations before

he submits them to ZERO.

b. the root of the system lies inside of an interval whose length

is inferior to the ratio.

c. one of the functions of the system starts varying in a direction

which is inconsistent with the direction indicated in the

Hollerith code of the calling sequence. In such a case, the

root is searched in the wrong direction and the subroutine

stops when it reaches one of the boundaries.

d. there is simply no root in the given interval.

If N is the mean number of iterations that will be needed to get

the root of one equation, in the case of three equations, the function

FONC3 will be computed N 3 times, FONC2 N 2 times and FONC1

only N times. It is then advised to choose the most sophisiticated

function as FONC1 and the most simple of the three as FONC3.

Error Messages

The error messages are written through an expanded WRITE 6

sequence. (This output order does not need anymore than the normal
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IBJOB processor). There are three messages:

1. TOO MANY ARGUMENTS

when one of the functions has more than 10 arguments.

2. INCORRECT CODING

when a mistake has been made in the Hollerith code of the calling

3. NO ROOT IN THE INTERVAL

A CALL EXIT is done after the output of the message.

This error procedure can be easily adapted to the standard one of

the installation.

Storage Required

7318 , i.e., 473 cells

The whole working storage is within the subroutine itself and no

common or other special storage is needed.
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Sample Computer Run for the System

2x - 3.18309886
I-Z

log l+z -1 = 0

_F.=
2 x (l-yZzZ)(z2-yZ)/zy 2 (I+z2)-5 =0

z - .14271816 = 0

BZ-9
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IOD

LMSCJS

654 EFN SOURCE STATEMENT - IFN(S} -

EXTERNAL F_NCI

XT=.3.C,I

FXT=Q.

CALL ZER_S(X,XT,FXT,I.2,0.OOOOOI,-5.,5.,6HGEINBO,FONCI,X,Y,Z)

WRITE(6,1_O) XyYtZ .................................................................................................

FQRMAT(IHE,,IOX,2HX=,EIS.8,SX,2HY=,EIS-8,SX,2HZ=,EIS-8 )

STOP ...................................................

END

LMSCJS

C54A - EFN SOURCE STATEMENT - IFN{S)

I

I
I

FUNCTION FONCI(X,Y,Z)

EXTERNAL FONC2

YT:O.OI

FYT=C.

FONCI=2.*X-B. 18309886*ALOG((I.-Z)/(I.+Z))-I.

RETURN

END

LMSCJS

C54B - EFN .......souR-C-E &-TAT-EMEN-T .....-- -I FI_-(S-)-----'.........

I

FUNCTI _N FONC2(X,Y, Z) ...................................

EXTERNAL FQNC3

ZT:,D. i ....................................

FZT:'_.

CALL Z ER__s(.Z_,Z_7.,.F_Z..T_,o,01,_0.000001,-2- ,5. ,6HARINBO,FONCB,X,Y, Z ).....................

FONC2: i. 57079632"X* ( I.-Y*_2*Z**2 )* (Z**2-Y**2)

/Z/Y**21 {.1.. +Z**_2) -.5 .........
RETURN

END ..................................................................................
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LMSCJS
C54C - EFN

FUNCTI_N FONCB(X,Y,Z)
FSNCB=Z-_. 14271816
RETURN
END

SOURCESTATEMENT - IFN(S) -

N

II

II
i

LMSCJS

uNOs-Ffi--c-_RE

IBLDR

77775 THRU 77777

X: C).425913-67E-()i ........-Y:-O.-_I-400-14iE-01 Z-----0;1-4-27i8i 6E-O0 ....

I
I
I

l

I
I B2-11
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APPENDIX C- 1

PROGRAMMER' S MANUAL

A description of each subroutine with flow charts is given in this section

and is intended for use by a programmer attempting to understand or change

the computer program. A list of symbols is given with R indicating REAL

and I indicating INTEGER variables. A listing of the program is found at the

end of this section.
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Begin

Plnts i

Desired

No

[ ....IPlot

Contours

T
Has a Particular "_

Stop

Fletcher-

Powell

R,)utine

Was Fletcher-
Powell
Successful

Nevctorl-

Raphsnn
Routine

Was Newton-
Raphsnn
Successful

Search-

Routine

'r

i Nn fHas Fletcher--_
-_ _ Powell Been J

M Tried J

Yes

No

'r

Has Newton-
Raphsnn Been
Tried

Yes

No

Has the Search
Routine Been
Tried

'1_ Was the Search _ No

- \ Roul tne SuccessfulJ

)

Yes I

l
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Select

Method

Requested

N° (Was the Meth°d_ StopSuc ce ssful

Plot _,_
Contours Stop

Stop

Logic Flow of Composite Program

C1-3



'1
I
I

I

I
I
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SI_T H 1 : I

SET i : |

INPUT SYSTEM

f| (x I Xz...,Xn) = 0

tz(Xl,X z ..,xn) : 0

(n(Xi. Xz .... x n) = 0

LMSC/HREC A783333

J ?
. . STOPx|+ I = xl+e i

[;iT] I/z HAVE AT LEASTi i <il N ITERATIONS

BEEN PERFORMED

f(;.i) : II(_()Z .... +fn(;) z [JiT &i] I/Z < ,

l o I
.... _-2 : s(;i)

_ -_ 'I '='.l _i = i,+i-i,

_i &i T

I i : -HIE(; i) Ai =

i Yi

I .;,((&i)

ql : l_(_i)'_'T;i . Hi?i?iTHi

I ......_/ Hi + I = Hi + Ai + Bi

I l

I " G i : i + _li i L

¢(_i) = fl(_i) 2 +.,. + fn{_i )2

• J_i_i)T si - g(_i)Tii + ZWJ

I .. .
• _ Oi ei

fJ+l = f(xi+Ois|)

IS I i , 1 < fili) and iiu i)

I Flow Chart of Fletcher-Powell Technique
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nKC.T_

1
1

..-,,,,, ..,. z ..,. '" "'mPl*"il I

p,,snlm p| (or qyllen_rj. | • o

_'_
fn

t
f_;onlp_lle'F r Yl_ ((I)_*F{pl) where J

D_termzne hlllhe0t value

Yh " F (ph)

D_ternltne Ioweot value

y, = r (pt)

1
Calculate centrotd

i n

tpqh

1
Reflection: Jp'- (I *e)p-eph

I Compute y (pC) . ye

Yell

STOP

1
le Yh

y*e

1"
Replace Ph by pet,

Rap|ice Ph by p*

1
Replace ill Pl by

I ( _ (Pl 4 P f))
'T

Simplex Method Flow Chart for a Function of an

Arbitrary Number of Variables
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,By Common Blocks

CNTR XL

X1%

YB

YT

DATA

N

F(1300)

X(1300)

Y(1300)

ERRO1% ITEST

IER

HI H(Z0, 20)

INIT IS

IN

DEL

EPS

METHOD

LMSC/HREC A783333

LIST OF SYMBOLS

R

1%

R

1%

I

1%

1%

1%

1%

I

R

1%

= left most position for x-axis of contour

plots

= right most position for x-axis of contour

plots

= bottom most position of y-axis of contour

plots

= top most position for y-axis of contour

plots

number of contour plots to be plotted

table of function values at each grid

line intersection on contour plot frame

table of x-values at each grid line

intersection on contour plot frame

table of y-values at each grid line

intersection on contour plot frame

= maximum number of iterations to be

allowed before solution technique con-

sidered unsatisfactory

= error flag _ 0 indicates solution

technique has failed

identity matrix initially and modified

in search routine in computations of

terms dependent on gradient leading
to minimum

= size of system to be solved (number

of unknowns )

= order of the system to be solved

= increment for rate of change of unknowns

in computing partials

= test criterion indicating accuracy
desired in solution

= flag indicating solution technique to

be used
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I

I
I

I
I

I
I

I
I

I
I

I
I
I

ITER

SRCH P(21, Z0)

ALPI£A

BETA

GAMMA

By Subroutines

DRIVER COMMON

ITABLE(3)

K1

x(z0)

CONTOR COMMON

DF

DX

DY

FC(100)

FMAX

FMIN

FO

F1

FZ(Z0)

R

R

R

R

ERROR

HI

INIT

I

R

CNTR

DA TA

INIT

R

R

R

R

R

R

R

R

R

LMSC/HREC A783333

= counter, keeps a running count of number

of iterations used in solution techniques

= table of simplex point for search routine

= reflection coefficient in search routine

= contraction coefficient in search routine

= expansion coefficient in search routine

= table of solution techniques attempted
that have failed

= counter, counts number of solution

techniques tried

= table of solutions to unknowns. Initially

contains initial estimates to roots

= contour value increment for successive

contour plots

= x increment for construction of grid

lines or contour plot

= y increment for construction of grid

lines on contour plot

= table of values of contours to be plotted

= maximum functional value on contour

grid

= minimum functional value on contour

grid

= contour functional value for which

x and y are plotted

= upper functional value available
closest to F0

= lower functional value available

closest to FO (only FZ(1) is used here)
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EVAL

IBOX

IBX I

IBY l

IFLAG I

IFL2 I

ITABLE(I250) I

IX I

II I

12 I

J I

NS I

V K

VI K

V2 R

Xl R

XZ R

XV K

YV 1<

COMMON

DFL(20)

F(20)

FX2

FI(20)

GXZ(a0)

ICOUNT

I L

INIT

R

R

R

R

R

I

LMSC/HREC A783333

= grid box number (there are 1225 in

total grid frames) under consideration

for contour plot values

= column number (x-grid line) under
cons ide ration

= row number (y-grid line) under con-
s ide ration

= first time through flag (if 0 first time)

= even (= 0) and odd (= I) row under
cons ide ration

= table of flags determining direction of

box diagonal (= 0 implies N to N + 3

and = 1 implies N + 1 to N + 2)

= a particular value of ITABLE

= index for first point

= index for second point

= index used in loading ITABLE

= plotting symbol selector

= number of contours - 1

= functional value at first point

= functional value at second point

= x-value to be plotted

= y-value to be plotted

= intermediate storage for most recent

x-value in computing contour values

= intermediate storage for most recent

y-value in computing contour values

= table of increments of functions for

computing partials

= table of functional values of system of

equations

= sum of the squares of the functions

= functional values

= functional values

= counter for number of times through

routine computing partials
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FPOWEL

IFLAG

PAR(Z0, 20)

x(2o)

COMMON

A(20, 20)

ALPHA

ARG

A1

A2

B(20, 20)

D1

ETA

ETA 1

EI(20, 20)

ZZ(20, Z0)

F

FXAS

G(20)

GU(20)

GXAS(20)

IMIN

S(20)

SIG(Z0)

T1

I

R

R

ERROR

H1

INIT

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

I

R

R

R

LMSC/HREC A783333

= first time through flag (= 0 first time)

= table of partial derivatives

= table of x-values for system

= array of storage for A i matrix

= storage for a in minimization process
- _7(I - (T2 + W - Z)/(T2 - T1 + 2W))

= square root argument for Z 2 '-T1 TZ

= storage for (;Ty.
1 1

= storage for YT H. Y.

I I I .H. _ _TH.I i i

= storage for B i matrix =

= storage for g(Xi )T Si

= storage for }7

= storage for 171 = (-2F)/DI

= -H. Y.
1 1

= EI_ T
1

= value of sum of squares of functions

= value of sum of squares of functions
at new iterative point

= gradient of functions of X.1

= gradient of functions of U

= gradient of functions of Xi+l

= maximum number of times through
minimization process allowable

= -H i g(X i)

= x increment in iterative procedure
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INITIAL

LINTBL

NEWRAP

T2

U(20)

V_

w(zo, zo)

x(zo)

XAS(Z0)

Y(Z0)

Z

COMMON

IERR

x(z0)

Xl(ZO)

COMMON

F1

FZ(Z0)

I

J

Xl

Y1

COMMON

DX{20, 1)

F(ZO)

PAR(20, Z0)

WK(Z0, Z0)

R

R

K

R

R

R

R

R

CNTR

.ERROR

H1

INIT

SRCH

I

R

R

DATA

R

R

I

I

R

K

ERROR

INIT

R

R

R

R

= X.+US.
I I

= _/Z 2 - T1 T2

= dummy storage for calling EVAL

= x-iterates at t.
t

- x-iterates at ti+ 1

= GXAS. - G.
i t

= 3/7(F - FU)+ T1 + T2

error flag for MAVRICK routine
(_ 0 indicated error)

initial estimates to roots

save storage of initial estimates

= functional value at first point

= functional value at second point

(only FZ(1) is used)

= row index

= column index

= interpolated x-value

= interpolated y-value

= x increment for x-iterates

= values of functions

= partial derivatives

= inverse matrix (D- I)
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PRINT 1

SRCH1

x(zo)

COMMON

X(20)

COMMON

Gl(20)

ITABLE{2)

IXl

IX2

N

PCENT{20)

PH(20)

PL(20)

PNTS

PS(Z0)

PSS(Z0)

Wl(ZO, ao)

x(z0)

Xl(Z0)

Y(Zl)

YH

YL

YS

YSS

R

INIT

R

INIT

SRCH

R

I

I

I

I

R

R

R

R

R

R

R

R

R

R

K

R

R

R

= x-values

= roots to system of equations

= size of system + one

= centroid

= points yielding highest functional value

= points yielding lowest functional value

= system size (floating point

= P* = (I +_)P -_Ph

= P** = (I + _) P* - yP

= dummy storage for calling EVAL

= roots to equations

= x-values input to EVAL

= y-values = F(p)

= highest y

= lowest _f

= y = P

functional values

keeps track of location of YH(ITABLE(1) )

and YL(ITABLE(2) )

index for YH

index for YL

= y** = y(p**)

©
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SUBROUTINE DRIVER

The driver controls entry to all solution techniques including entry to

the input and output routines.

Equations Used: None

Labeled Common: ERROR

H1

INIT

Dimensioned Storage: ITABLE (3)

x (20)

Called from: System

External References: CONTOR

FPOWELL (X)

INITAL (X)

NE WRAP (X)

PRINT 1 (X)

SRCH 1 (X)

Input: None (control region)

Output: None (control region)
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SUBROUTINE INITAL (X)

Reads input data, checks for read errors, and initializes estimates to
roots.

Equations Used: None

Labeled Common: CNTR

ERROR

HI

INIT

SRCH

Dimensioned Storage: X(20)

xl (zo)

Called from: DRIVER

External References: M_AVRIK

Input: Data cards

.Output: Initial estimates to roots, desired computation options and constants
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SUBROUTINE EVAL (X, FX2, GX2, PAR)

Evaluates the system of equations for a given set of x values, computes

sum of squares of functions and partial derivatives•

Equations Used:

-8 fl 8 fl 8 fl-

' 8x ' "'" ' 8x
8Xl 2 n

8 f2 8 f2 8 f2

Xl '''" ' 8x8 ' 8xz n

8f 8f
n rl.

8x I 8 x 2

8f
n

8x
n

where

8f. n

= Y_ 2fk _fk8x.
i k=l

with

Ark = (fk - flk)/Axi

fk = f(xk) for i / n

fk = f(xk + Ax) for i = k

Labeled Common: INIT
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Dimensioned Storage: DF 1 (2 0)

DX (Z0)

r(Z0)

F1 (Z0)

GXZ (Z 0)

PAR (Z0, Z0)

x(zo)

Called from: CONTOR

FPOWEL (X)

NEWRAP (X)

SRCHI (X)

External References: None

Input: X-iterates

Output: Matrix of partials, sum of squares of functions, and values of each

function in system
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SUBROUTINE FPOWEL (X)

The Fletcher-Powell iterative technique is for solving simultaneous non-

linear algebraic equations.

Equations Used:

f(Ki) = fl(_)Z + ... + fn(K) z

"'" 8"x--d = g{_i)V"I

Si = -Hi g (_i)

-2f(_ i)

_I =
g (_i)T Si

-ui = x" +_Sil

f(_i) = fl(_l )2 + ... + fn(_i)z

!

......... \, """ _'6"-nJ

1
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_T Si + W - Z ]

g(_i-----j'T S i - g(Y,i )T S i + 2W ]

ai = a.S.1 1

fi+ 1 = f(_i + a. _. )1 1

_i+l = Ki ÷ _"1

tl = Si '

?i = gi+l - g-i

T
aiai

A. =

_T Yi

. "--

1

=H.y. ?T H.
1 1 1 1

Hi+ I = H i + A. + B.i i

luabeled Common: ERROR

HI

INIT
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Dimensioned Storage: A (Z0,Z0)

B (Z0,Z0)

El (Z0,20)

EZ (Z0,20)

G(Z0)

G4 (zo)

GXAS (20)

s (zo)

SIG (zo)

u (zo)

Wl (Zo,zo)

x (zo)

XAS (Z0)

Y (Z0)

Called from: DRIVER

External References: EVAL (X, F, G, Wl)

EVAL (U, FU, GU, Wl)

EVAL (XAS, FXAS, GXAS, W I)

Input: Initial estimates (xi)

Output: Roots to system of equations (Xn)
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SUBROUTINE NEWP_AP (X)

The Newton-Raphson iterative technique for solving simultaneous non-

linear algebraic equations.

Equations Us ed:

F 1 + F Z +... +F
x 1 x 2 x n

= -fl{Xl, X 2, ... , X n)

F z + F 2 + ... + F 2

x 1 x z xn
= -fg(xl, xz, ... , xn)

where

F 1
x 1

F n + F n + ... + F n

x I x 2 xn

AXl, F 2 _
= 88_fxllI 8fzxI 8x 1
• (i-I)

X X X n )= -fn I' 2' "'" '

Ax I,

(_-I)

etc.

AX 6 = B

where

-Sfl 8fl "'" 8fl 7

"8x I 8 x2 F
8 f2 8 fn

"'" "'" _X
8Xl n

8f
n

e • •

8x 1

8f
n

8x
n-
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x 6

m ._

- _x l-

Ax 2

_Ax
n

"fl(Xl , x Z, ...

-f (x x
n I' Z' " " "

m

u

; x n)

, xn)
w

. --

1 X i + Xb.

Labeled Common: ERROR

[NIT

Dimensioned Storage: DX(20, I)

F (Z0)

PAR (20, 20)

WE (z0, zo)

x (z0)

Called from: DRIVER

External References: EVAL (X, FX2, F, PAR)

GASSIM (WK, IS, I, DET, DX)

Input: Initial estimates (xi)

Output: Roots to system of equations (Xn)
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SUBROUTINE SRCHI (X)

The Simplex Method for function minimization of Nalder and Mead for
locating minima.

Equations Used:

n

•F = _ (fi)z

Y = F(P)

Yh = F(Ph)

Yl = F(P_)

n
-- 1

P -_ P.
1

i=l

i_h

P = (I + a)P - aP h

y(p*) = y_

p = (I + z)P* - P

Y = y(p**)

P = _Ph ÷ (I - _)

n.

I

Pi - _ Y] (Pi + PP
1
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Labeled Common: ERROR

INIT

SRCH

Dimensioned Storage:

Called from: DRIVEl%

G1 (20)

PCENT (20)

PH (20)

PL (20)

PS (20)

PSS (20)

Wl (20, 2o)

x(20)

Xl (z0)

y(Zl)

External References: EVAL (El, Y(I), G1, W1)

EVAL (El, YS, G1, W1)

EVAL (X1, YSS, G1, W1)

Input: Simplex points

Output: Roots to system of equations
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SUBROUTINE PRINT1 (X)

Prints the solution to the system of equations input.

Equations Used: None

Labeled Common: INIT

Dimensioned Storage: X(20)

Called from: DRIVER

External References: None

Input: Solutions to system

Output: Printed solutions
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SUBROUTINE C ONTOP_

Plots contours on a grid of 35 lines by 35 lines.

Equations Used:

F..max - F..min
1j D

N - 1
- AF

F. = F..min + (i - i) AF
I Ij

or F. = F..min + (SF) i-I AF
I lj

Labeled Common: CNTR

DATA

INIT

Dimensioned Storage:

Called from: DRIVER

Fc (10o)

FZ (Z0)

PAR (20,20)

Xl (Z0)

External References: CAMRAV (9)

GRIDIV (i, XL, XR, YB, YT, DX, DY, -6, -6, -6, -6,
-3, -3)

LINTBL (II, I2, XI, YI, FI, F22, F0)

POINTV (XI, YI, -NS)

C1-24
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In_: Grid limits and number of contours desired

Output: Contour plots
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APPENDIX C-2

FALSE POSITION PROGRAM LISTING

C54E000!

* SUBROUTINE ZEROS,COMPUTES THE ROOT OF F(X)=O

* CALLING SEQUENCE TO SOLVE THE EQUATION F_NC(X,Y, .... )=C,

_*_ CA L L_._ZER_.S ( X tX_T, F_XT_, HA.T[ Q..__P RE_CI. _ _XM_.I__N,_X_M_A_X__y_BHT__T_.pP_R R.,_FO NC__X, y, .___._.}___) _ ____

* INDICATORS GUIDE

* I)CODING BITS 26 TO 35

* BIT 26=I

* BIT 27:1

* BIT 28=I

* BIT 29:1

* BIT 30=i

BIT 31=l

ARITHMETIC TABULATION

GEOMETRIC TABULATION

INCREASING FUNCTION

DECREASING FUNCTION

INITIAL VALUE SUPERIOR TO THE RO_T

INITIAL VALUE INFERIOR TO THE ROOT

* B I T 32=I '

* BIT 33=i

* 21LINKAGE TABUL

FUNCTION WITH AN UNDEFINED MODE OF VARIATIgN

SUPERIOR VALUE

BIT 34:1 INFERIOR VALUE

BIT 35=I BEST VALUE OF THE RESULT

BITS 15 TO 17

I

I
I
I,

il-

4t,

41.

TABUL =2 COMPUTATION OF F(V) FOR V=VT

TABUL--=5---THE-MODEOF VAR-IATIgN IS UNKNOWN.X=XT+PAS OR-X=XT.PAS

TABUL =i SEARCH OF THE BOUNDARIES

* TABUL :0 ........BOUNDARIES FOUND,SEARCH OFTHEROOT ...........

--*--3-) [.-i NK-AG E A I GD 8-1T----iZ_

,.l-

* ........ AIGD---=I--INTE-RSE-cTION--WiT_H--A--FIXED SLO-P_E LINE ......................................

* AIGD =0 DICHOTOMY

* 5)COUNTER BITS 7 AND 8

I

I
I
I

I

* ADDS i TO ITS CONTENT EACH TIME _NE ADDS A BIT Tg ONE OF THE

* BOUNDARIES.-THIS OPERATION CAN BE DgNE--ONLY 2 TIMES "

* 6)FLAGS i AND 2 BITS 5 AND 4

"N.

-* F L A-G-2--=-I--I-F--X--T--i S--GR E-AT-ER--T H-A N--g R- EQ-UAIL 'm_--X MAX- .......................

* FLAGI =I IF XT IS LESS THAN OR EQUAL TO XMIN

* 7)ERROR BIT BIT 3

* INDICATES THAT THE VARIABLE REACHEr. _NE OF THE BOUNDARIES

C2-I
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I
I

I
I

LIVISC/HREC A783333

ENTRY ZEROS

.****** MACRO-INSTRUCTION GENARATING THE BLOCKS *******

******* OF PARAMETERS RELATED WITH EACH STAGE *******

_L_CK-.....MACR_ [
IRP I

RATE-I BSS I

[ND-I BSS I

Vl-I BSS l

FVI-I BSS 1

I
l

I

I
I
I,

I

I
I

I
I

VS-I BSS

FVS-I BSS

VA-I BSS

FVA-I BSS
V-I BSS

MA-I BSS

-M-I ......... _SS-----

LKDR-I PZE

BCI

CALL-I SX

RA

T

T

PZE

B S S ........ N

I,ZEROS-I ..........................................

RET.AP

,LKDR-I

SPACE

IRP

ENDM

2

BLOCK

*-**-** PARAMETERS

N SET 3

NNN SET N+I6

SIZE BLOCK (1,2,3)

OF DIMENSION "''*'**

tRESTAURATION*

ZEROS

X2

T RA

CLA

STA

TXI

--SXD

AXT

STI

LKDRI,2

AxT4

*+I,2,NNN

STAG_,-2

**,2 RESTAURATION

RESTAURATION OF THE ADDRESS OF INDEX 4

_F THE INDEXES

Xl

AXT4

AXT

AXT
....... L-DI

TRA

PROTI PROTECTION OF-THE INDICATOR-REGISTER .......

1,4 RETURN TO THE CALLING PROGRAM

G2-2


